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Homology algorithms for subsets of R?
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Goal:

Input: representation of a subset X C R
Output: Betti numbers, torsion coefficients, homology gener-

ators

Input: representation of a continuous map f : X — Y of
subsets of R?
Output: matrix of map induced in homology
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Prototype homology algorithm.

In principle, the homology algorithm may look as follows:

(1) Triangulate the space

(2) Construct the matrices of boundary maps
(3) Compute the kernel and the image

(4) Compute the quotient space
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Set representation -

Simplicial complex

e classical

Cubical set

e typical in imaging and rigorous
numerics
e very efficient and fast represen-
tation (bitmaps)
General polyhedrons

e most general
e obtaining the chain complex is
not straightforward
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Cube triangulation

e How many simplices do we need to triangulate a d-cube?
e Not more than d! but can we do better?




Cube triangulation,

Theorem. Hughes, Anderson (1995), Bliss, Su (2005)

d [1[2[3]4[5]6 | 7
T°(d)|1]2]5/16|67|308|1493
T(d) [1]2]5(16]7 | 7 | ?

Theorem. Smith (2000)
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Input

e On input: a set represented as a list of top dimensional
cells (cubes, simplices, ...)

e Generation of faces, incidence coefficients and boundary
maps, whenever necessary, must be considered a part of
the job!
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Elementary intervals and cubes

e An elementary interval is an interval |k,l] C R such that [ = k (degen-
erate) or [ = k + 1 (nondegenerate).
e An elementary cube Q in R? is

I x Iy x - x I, C RY

e The dimension of () is the number of nondegenerate I;.

o JC — the set of all elementary cubes in R?

o /C. — the set of all elementary cubes in RY of dimension &
e An elementary cube is full if its dimension is d.

e For A C K we use notation |A| := ] A.

e For A C R we use notation I(A) ={Q e K| QC A}.
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Cubical Chains

e Given an elementary cube () we define the associated elementary chain

by

A~ 1 ifP=
P tP=0
0  otherwise.
e A cubical chain is a finite linear combination of elementary chains of the
same dimension, called the dimension of the chain.
e All cubical chains of dimension ¢ form an Abelian group, denoted C, and

called the group of ¢-chains.



Cubical Product i

e Given two elementary chains 1/5, CA) we define their cubical product by
PeQ:=Px0.

and we extend this definition linearly to arbitrary chains.



Cubical Product

Support of chain ¢
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Boundary Operator s

e Boundary operator is a homomorphism 0 : C; — C,_; given on genera-
tors by

0 if Q= [l],
0Q = [l +1] — I if Q= 1[1,1+1].
\8]A<>}Aj+(—1)dim[f<>8f) if Q=1xP.



Boundary Operator s

e Boundary operator is a homomorphism 0 : C; — C,_; given on genera-
tors by

0 if Q= [l],
0Q = [l +1] — I if Q= 1[1,1+1].
\8]A<>}Aj+(—1)dim[f<>8f) if Q=1xP.

Theorem.
do0d =0
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Chain groups of a cubical set i

e For an elementary chain ¢ = > | a;Q); we define its support by

el == J{Qi i #0}
e Given a cubical set X we define the group of g-chains of X by
Co(X) ={cel,| ]| Cc X}
e |s is easy to verify that we have the induced boundary operator

0; : Cy(X) = Cya(X).
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Cubical Homology »

e The kernel of 05( is called the group of g-cycles of X and denoted by
Zy(X).

e The image of %ﬁl is called the group of g-boundaries of X and denoted
by B,(X).

e One can verify that B,(X) C Z,(X), which allows us to define the gth
homology group of X by

Hy(X) = Z,(X)/B(X)

e By homology of X we mean the collection of all homology groups

H(X) = {H,(X)}.
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Immediate algebraization:

e generate the faces

e construct the boundary maps

e find Smith diagonalization and
read Betti numbers

- ]
1 1
D.=]-1 1
1
B, = Q'D\R
- ]
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Standard approach x

Immediate algebraization:

e generate the faces

e construct the boundary maps

e find Smith diagonalization and
read Betti numbers

] _ Advantages:

1 1 e standard linear algebra
D= | -1 1 e may be easily adapted to ho-
1 mology generators

Problems:

B, = Q 'D.R e constructing faces immediately

- - may increase data size

1 e complexity: C'n’

B, = 1 e sparseness of matrices may not
help (fill-in process)

e (' large for sparse matrices
(dynamic storage allocation)




Geometric reduction algorithms »

(Geometric Reductions

e Reduce the set so that
—the representation used is
preserved
—the homology is not
changed
e build chain complex
e compute homology




Shaving 23

olf X = |JAX is cubical and

() € X is an elementary cube
such that ()N X is acyclic and

X' =U (X \{Q}) then
H(X)= H(X')

e full cubes representation is
used!

e acyclicity tests via lookup ta-
bles: ]
— 2371 entries
— extremely fast in dimension

2 and 3




Shaving 23

olf X = |JAX is cubical and

() € X is an elementary cube
such that ()N X is acyclic and

X' = U (X \{Q}) then
H(X)= HX'
e full cubes representation is

used!
e acyclicity tests via lookup ta-

entries
— extremely fast in dimension
2 and 3
— not enough memory for di-
mension above 3
e partial acyclicity tests in higher
dimensions
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Free face reductions s

foreach ¢ do
if cbd(o) = {7} then

remove(o);
remove(T);

endif;
endfor;

Hl —Hl—H]
/
U—1—

IZI/

e free face - a generator with

exactly one generator in
coboundary

e a combinatorial counterpart of
deformation retraction

e on algebraic level:

1 1 1 1 1 o]
1 1 1 1
1
1 1
1 1
1 1
1 1
1
1
1
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Dual reductions?

1 1 1 1 1
1 1 1 1
1
1 1
1
1 1
1 1
1
1
1

e free coface - a generator with exactly one generator in boundary

e one space homology theory with compact supports for locally compact
sets (Steenrod 1940, Massey 1978)

e combinatorial version (MM, B. Batko, 2006)



Coreduction algorithm =

() := empty queue;
enqueue(Q,s);
while ) # () do
s:=dequeue(Q);
if bdgs = {t} then
remove(s);
remove(?);
enqueue(Q), chdi t);
else if bdgs = () then
enqueue(Q), cbdg s);
endif;
endwhile ;



Coreduction algorithm =

() := empty queue;
enqueue(Q,s);
while Q # () do
s:=dequeue(Q);
if bds s = {t} then

remove(s);

remove(t); z u > u . I]
enqueue(Q), chdi t);
else if bdgs =) then /

enqueue(Q), cbdg s); —
endif: U — 1 —1

endwhile ; /



Coreduction algorithm
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e S-complex - a free chain complex with a fixed basis S which allows
computation of incidence coefficients x(s,t) directly from the coding of
the basis
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Coreductions for S-complexes 2

e S-complex - a free chain complex with a fixed basis S which allows
computation of incidence coefficients x(s,t) directly from the coding of
the basis

e Examples: cubical complexes, simplicial complexes

e Rectangular CW-complexes (P. Dfotko, T. Kaczynski, MM, T. Wanner,
2010)



Augmentible S-complexes s

Definition. An S-complex is augmentible iff there exists
€ : Sy — R (augmentation) such that

oc(t)#0fort €S
o) k(s t)e(t) =0 for s € S)




Coreduction algorithm i

Unlike torus, coreductions of Bing's House result in a non-augmentible S-
complex.
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CAPD::RedHom »

e http://redhom.ii.uj.edu.pl

e A subproject of CAPD (http://capd.ii.uj.edu.pl)

e A sister project of CHomP (http://chomp.rutgers.edu)
Generic homology software based on geometric reductions

e AS, CR, DMT algorithms

e Betti and torsion numbers, homology generators, homology maps, per-
sistence intervals

e Z and Z, coefficients

e generic but efficient: for cubical sets, simplicial sets, cubical CW com-
plexes, ...

e written in C++-, based on C++ templates and generic programming
e Authors: P. Dtotko, M. Juda, A. Krajniak, MM, H. Wagner, ...



Rectangular CW-complexes i

st T T b,
g [ 1] Hs
g i
fi =
@i_ _Ei
5 #@ﬁa@% [
- in =
A E -
ke + 1 =5
T A




Rectangular CW-complexes s

Theorem. (P. Dfotko, T. Kaczynski, MM, T. Wanner,
2010) Consider a rectangular CW-complex given by a rectangu-
lar structure Q. Let P and () denote two arbitrary rectangles
in @ with dim ) = 1 + dim P, and define the number agp as
follows. For d =1 and @ = |a, b] let

—1 if P=]a],
Qop -— 1 it P = [b] .
0 otherwise ,

and for d > 1 set
(1)
L
S (—1) i=y dimQ; Q. P if P < () and Pj < Q]' )
QP =
0 otherwise .
Then the numbers agp are incidence numbers for the given

rectangular CW-complex.



Rectangular CW complex versus cubical approach s

| ——mean
e median °

25 30




Numerical examples - manifolds s

TxSH(SYW I SIx KITxT PxK
dim 5 6 6 6 8
size in millions 0.07] 0.10 0.40| 2.36| 32.05
H, 7, 7, 7, 7, 7,
H, 7| 0 Z*+Zy 77+ 7
H, 7 0 Z+Zy  Z° 73
H, 7 7 7! 7

Hy Z,
Linbox::Smith 1301 350 > 600| > 600 -
CHomP::homcubes 1.3 1.7 10 56| 17370
RedHom::CR 0.03] 0.04 0.26 2.5 34
RedHom::CR+DMT 0.021 0.08 0.5 1.1 -




Numerical examples - Cahn-Hillard =

P0001 | P0O050 | P0100
dim 3 3 3
size in millions 75.56| 73.36| 71.64
H, 7" 7 7
H, 76554 | 72962 | 71057

H, 7*
Linbox::Smith > 600 | > 600 > 600
CHomP::homcubes 400  360| 310
RedHom::CR 18 16 15
RedHom::CR+DMT 8 7 §)
RedHom::AS 10 5 3.9




Numerical examples - random sets s

d4s8f50 | d4s12f50 | d4s16f50 | d4s20f50

dim 4 4 4 4

size in millions 0.07 0.34 1.04 2.48
H, 7* Vi 7* 7*

H, 72 717 730 751

H, 7174 771389 75510 715401

H, 72 715 771 7179
Linbox::Smith 120 > 600 > 600 > 600
CHomP::homcubes 1 8.3 41 170
RedHom::CR 0.08 1.4 15 140
RedHom::CR+DMT 0.03 0.16 0.58 2.9




Numerical examples - simplicial sets s

random set| S*| S°

dim 41 2 5

size in millions 48/ 19| 4.3
H 7| 7, 7

H, 7Z¥ 0 0

H, 7% 7 0

Hs 0

Hy 7,
CHomP::homcubes 83013102100
RedHom::CR+DMT 65| 11| 100




Reduction equivalences 4«

Theorem. Assume S’ is an S-complex resulting from
removing an coreduction pair (a, b) in an S-omplex S. Then the
chain maps (" : R(S) — R(S") and ((¢?) : R(S") — R(S)
given by

(c—1999h  for k=dimb—1,
a,b .
(o) = ¢ oo (c,b)b  for k =dimb,

| c otherwise |
and o)
ab ¢ — kb for k= dimb,
i(e) = { e .
c otherwise ,

are mutually inverse chain equivalences.
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Homology model x

o the reduced S-complex S/ — the homology model of S as a conve-
nient model to solve the problems of decomposing homology classes on
generators.

e/ R(S) — R(S) and «/ : R(S/) — R(S) mutually inverse chain
equivalences obtained by composing the maps 7(*? and +(®?).

e used to transport homology classes between H.,(S) and H.(S/)

In the case of Free Face Reduction Algorithm and Free Coface
Reduction Algorithm it is linear!
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Homology generators

o Sy=1{s1,s5...5% }.
o { [ui], [ugl,...|u, } — generators of the homology group H,(S).
e Task: decompose |z] € H,(X) on homology generators

[2] = Z i|u)

e Linear algebra problem

n
z = g xiu; + oc
i=1

with unknown variables x1, x9,...,x, € Z and ¢ € R,1(S5).



Homology generators s

Tq Tg+1
_ _ q+1
Z—Ez]], Euzj],c gys
J=1
Tq
g+l _ 4
Js, = g kS
J=1
Tq Tq+1

ac:S‘ S‘akjyk 8;]-

j=1 \k=1




Homology generators s

_ _ q+1
Z—Ez]], Euzjj,c gys
J=1
T'q
+1
ds; = g akjsg
J=1
Tq Tq+1
_ q
Jc = S ) gy | S
J= 1 k=1
Thus, we get a system of 7, linear equations with n 4 r,,; unknowns
Tq+1

— Zumxl -+ Zakjyk for j =1,2,.

e In case of large S the cost is huge!
e Solution: transport the problem via 7/ to homology
model and solve it there
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Homology of cubical maps..

e X Y — cubical complexes

e g: X — Y is cubical if maps elementary cubes to elementary cubes.

e ¢ induces chain map g : R(X) — R(Y)

e examples of interest: inclusions and projections

o U = {|u], |ug],...|[un)} and W := {|wy], |wal, ... |w,] } — bases of
H,(X) and H,(Y)

e To find the matrix of g, ecompose g«(u;) on generators in W

e Using the diagram

R(Y')

we can solve the problem in the homology model Y/, where it is much
simpler.



Computing Homology of Maps s

In principle, computing homology of a map f : X — Y is a three step
procedure:

(1) Find a finite representation of f

(2) Use it to build the chain map

(3) Compute the map in homology from the chain map
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In principle, computing homology of a map f : X — Y is a three step
procedure:

(1) Find a finite representation of f

(2) Use it to build the chain map

(3) Compute the map in homology from the chain map
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Combinatorial representations s

Let X = |X| be a full cubical set with representation X and let f : X — X
be a continuous map. We say that F : X = X is a representation of f if

F(Q) C it [F(Q)].

and for each x € X the set
= J{F QI lzeQex}

is acyclic.

Theorem.  (Allili, Kaczynski, 2000, Kaczynski, Mischaikow,
MM 2004) If F is a representation of f, then there is an algo-
rithm which transforms F into a chain map whose homology is

the homology of f.



Graph approach (Granas and L. Gérniewicz, 1981)




The homology map algorithm (Mischaikow, MM, Pilarczyk
2005)

(1) Construct a representation F of f: X — Y.

(2) Construct the graph G of F' := | F].

(3) If the homologies of the values of F' are not trivial, refine the grid and
go to 1.

(4) Apply shaving to X, Y and G in such a way that the shaved GG’ is the
graph of an acyclic mvmap F’: X' — Y’

(5) Find the homologies of the projections p: G — X and ¢: G — Y.

(6) Return H,(q)H,(p)™*



The homology map algorithm (Mischaikow, MM, Pilarczyk
2005) s

(1) Construct a representation F of f: X — Y.

(2) Construct the graph G of F' := | F].

(3) If the homologies of the values of F' are not trivial, refine the grid and
go to 1.

(4) Apply shaving to X, Y and G in such a way that the shaved GG’ is the
graph of an acyclic mvmap F’: X' — Y’

(5) Find the homologies of the projections p: G — X and ¢: G — Y.

(6) Return H,(q)H,(p)™*




Coreduction model approach, MM 2010

e Using coreductions construct homology models of X, Y, and G

e Using homology models find the homology of the projections p : G — X
andg: G —Y

e Compute the inverse of p, and return ¢.p; !




Graph approach versus coreduction model approach s

Set Emb| Size| CHomP RedHom |speedup

Dim | x10°% | homcubes CR
z2torus8.map | 6 | 3.65 10.3 1.5 I
z2torusl2.map| 6 | 7.75 25.6 3.2 8
z2torusl6.map| 6 |14.13 545 6.8 3
z2torusl9.map| 6 [23.29 121.0 11.7 10




Alternative based on Cech structures (outline) s

e choose a Cech structure X on X

o for () € X take F(()) as a convex enclosure of f(()) obtained via rigorous
numerics

o F: K(X) —» K(XUUF(X)) acts as a simplicial map

e the homology of f is computed when K (X)) C K(X U F(X)) induces
an isomorphism

e this is guaranteed when the enclosure is good enough
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e choose a Cech structure X on X

o for () € X take F(()) as a convex enclosure of f(()) obtained via rigorous
numerics

o F: K(X) —» K(XUUF(X)) acts as a simplicial map

e the homology of f is computed when K (X)) C K(X U F(X)) induces
an isomorphism

e this is guaranteed when the enclosure is good enough



Alternative based on Cech structures s

Example: consider
f:Co2z—2°€C



Alternative based on Cech structures s

Example: consider
f:Caz—2€eC
]
B c K c
A
o 1\
" i A = i
\ || |
E' LA T/
G = L | —]
F1 F2




Cubical persistence via coreductions and inclusions:ss

e Assume field coefficients
e Compute the maps induced in homology by inclusions
e Find the compositions and ranks of the respective matrices

N - i,
8,7 = rank ¢’
e Compute the number of (i, j)-persistence intervals from formula

pi,(1,5) = (82771 — gimbI=Y) — (BT — gl



Direct coreduction approach to cubical persistences.
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Direct coreduction approach to cubical persistences.

e |evelwise coreductions

e seperate queue for BFS on each level

e selection always from the lowest level non-empty queue

e result: coreductions for all sublevel sets together in O(nlog™ n) time
e Complexity of finding persistence intervals on the plane is O(nlog" n)



Timings 55

Grid Levels classical RedHom | RedHom
approach (*)| CR-incl.| CR-direct

1024 x 1024 17 3299.0 470.0 3.4
2048 x 2048 18 36187.0, 8012.0 13.0
100 x 100 x 100| 25 60407.0] 4025.0 -

(*) - implementation of Edelsbrunner-Letscher-Zomorodian algorithm for cu-
bical sets by V. Nanda
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