Computational Homology in Topological Dynamics

ACAT School, Bologna, Italy MAY 26, 2012

Marian Mrozek

Jagiellonian University, Kraków

Outline 2

- Dynamical systems
- Rigorous numerics of dynamical systems
- Homological invariants of dynamical systems
- Computing homological invariants
- Homology algorithms for subsets of \mathbb{R}^d
- Homology algorithms for maps of subsets of \mathbb{R}^d
- Applications

Goal 3

Input: representation of a subset $X \subset \mathbb{R}^d$ Output: Betti numbers, torsion coefficients, homology generators

Goal 3

Input: representation of a subset $X \subset \mathbb{R}^d$ **Output**: Betti numbers, torsion coefficients, homology generators

Input: representation of a continuous map $f : X \to Y$ of subsets of \mathbb{R}^d Output: matrix of map induced in homology

In principle, the homology algorithm may look as follows:

In principle, the homology algorithm may look as follows: (1) Triangulate the space

In principle, the homology algorithm may look as follows: (1) Triangulate the space

(2) Construct the matrices of boundary maps

In principle, the homology algorithm may look as follows:

- (1) Triangulate the space
- (2) Construct the matrices of boundary maps
- (3) Compute the kernel and the image

In principle, the homology algorithm may look as follows:

- (1) Triangulate the space
- (2) Construct the matrices of boundary maps
- (3) Compute the kernel and the image
- (4) Compute the quotient space

Set representation 5

Simplicial complex

• classical

Set representation 6

Simplicial complex

classical

Cubical set

- typical in imaging and rigorous numerics
- very efficient and fast representation (bitmaps)

Set representation 7

Simplicial complex

classical

Cubical set

- typical in imaging and rigorous numerics
- very efficient and fast representation (bitmaps)

General polyhedrons

- most general
- obtaining the chain complex is not straightforward

Cube triangulation ⁸

• How many simplices do we need to triangulate a *d*-cube?

Cube triangulation ⁸

- How many simplices do we need to triangulate a *d*-cube?
- Not more than d! but can we do better?

Cube triangulation ⁸

- How many simplices do we need to triangulate a *d*-cube?
- Not more than d! but can we do better?

Cube triangulation 9

Theorem. Smith (2000) $C(d) \geq \frac{6^{d/2}d!}{2(d+1)^{(d+1)/2}}$

Input 10

Algebraists expect matrices of boundary maps as input of homology computations.

Input 10

Algebraists expect matrices of boundary maps as input of homology computations.

- On input: a set represented as a list of top dimensional cells (cubes, simplices, ...)
- Generation of faces, incidence coefficients and boundary maps, whenever necessary, must be considered a part of the job!

• An elementary interval is an interval $[k, l] \subset \mathbb{R}$ such that l = k (degenerate) or l = k + 1 (nondegenerate).

- An elementary interval is an interval $[k, l] \subset \mathbb{R}$ such that l = k (degenerate) or l = k + 1 (nondegenerate).
- An elementary cube Q in \mathbb{R}^d is

 $I_1 \times I_2 \times \cdots \times I_d \subset \mathbb{R}^d.$

- An elementary interval is an interval $[k, l] \subset \mathbb{R}$ such that l = k (degenerate) or l = k + 1 (nondegenerate).
- An elementary cube Q in \mathbb{R}^d is

 $I_1 \times I_2 \times \cdots \times I_d \subset \mathbb{R}^d.$

• The dimension of Q is the number of nondegenerate I_i .

- An elementary interval is an interval $[k, l] \subset \mathbb{R}$ such that l = k (degenerate) or l = k + 1 (nondegenerate).
- An elementary cube Q in \mathbb{R}^d is

 $I_1 \times I_2 \times \cdots \times I_d \subset \mathbb{R}^d.$

- The dimension of Q is the number of nondegenerate I_i .
- \mathcal{K} the set of all elementary cubes in \mathbb{R}^d

- An elementary interval is an interval $[k, l] \subset \mathbb{R}$ such that l = k (degenerate) or l = k + 1 (nondegenerate).
- An elementary cube Q in \mathbb{R}^d is

$$I_1 \times I_2 \times \cdots \times I_d \subset \mathbb{R}^d.$$

- The dimension of Q is the number of nondegenerate I_i .
- \mathcal{K} the set of all elementary cubes in \mathbb{R}^d
- \mathcal{K}_k the set of all elementary cubes in \mathbb{R}^d of dimension k

- An elementary interval is an interval $[k, l] \subset \mathbb{R}$ such that l = k (degenerate) or l = k + 1 (nondegenerate).
- An elementary cube Q in \mathbb{R}^d is

$$I_1 \times I_2 \times \cdots \times I_d \subset \mathbb{R}^d.$$

- The dimension of Q is the number of nondegenerate I_i .
- \mathcal{K} the set of all elementary cubes in \mathbb{R}^d
- \mathcal{K}_k the set of all elementary cubes in \mathbb{R}^d of dimension k
- An elementary cube is full if its dimension is d.

- An elementary interval is an interval $[k, l] \subset \mathbb{R}$ such that l = k (degenerate) or l = k + 1 (nondegenerate).
- An elementary cube Q in \mathbb{R}^d is

$$I_1 \times I_2 \times \cdots \times I_d \subset \mathbb{R}^d.$$

- The dimension of Q is the number of nondegenerate I_i .
- \mathcal{K} the set of all elementary cubes in \mathbb{R}^d
- \mathcal{K}_k the set of all elementary cubes in \mathbb{R}^d of dimension k
- An elementary cube is full if its dimension is d.
- For $\mathcal{A} \subset \mathcal{K}$ we use notation $|\mathcal{A}| := \bigcup \mathcal{A}$.

- An elementary interval is an interval $[k, l] \subset \mathbb{R}$ such that l = k (degenerate) or l = k + 1 (nondegenerate).
- An elementary cube Q in \mathbb{R}^d is

$$I_1 \times I_2 \times \cdots \times I_d \subset \mathbb{R}^d.$$

- The dimension of Q is the number of nondegenerate I_i .
- \mathcal{K} the set of all elementary cubes in \mathbb{R}^d
- \mathcal{K}_k the set of all elementary cubes in \mathbb{R}^d of dimension k
- An elementary cube is full if its dimension is d.
- For $\mathcal{A} \subset \mathcal{K}$ we use notation $|\mathcal{A}| := \bigcup \mathcal{A}$.
- For $A \subset \mathbb{R}^d$ we use notation $\mathcal{K}(A) := \{ Q \in \mathcal{K} \mid Q \subset A \}.$

Cubical Chains 12

 \bullet Given an elementary cube Q we define the associated elementary chain by

$$\widehat{Q}(P) = \begin{cases} 1 & \text{ if } P = Q \\ 0 & \text{ otherwise.} \end{cases}$$

Cubical Chains 12

 \bullet Given an elementary cube Q we define the associated elementary chain by

$$\widehat{Q}(P) = \begin{cases} 1 & \text{ if } P = Q \\ 0 & \text{ otherwise.} \end{cases}$$

• A cubical chain is a finite linear combination of elementary chains of the same dimension, called the dimension of the chain.

Cubical Chains 12

 \bullet Given an elementary cube Q we define the associated elementary chain by

$$\widehat{Q}(P) = \begin{cases} 1 & \text{ if } P = Q \\ 0 & \text{ otherwise.} \end{cases}$$

- A cubical chain is a finite linear combination of elementary chains of the same dimension, called the dimension of the chain.
- All cubical chains of dimension q form an Abelian group, denoted C_q and called the group of q-chains.

Cubical Product 13

• Given two elementary chains \widehat{P}, \widehat{Q} , we define their cubical product by $\widehat{P} \diamond \widehat{Q} := \widehat{P \times Q}.$

and we extend this definition linearly to arbitrary chains.

Cubical Product 14

Boundary Operator 15

• Boundary operator is a homomorphism $\partial : C_q \to C_{q-1}$ given on generators by

$$\partial \widehat{Q} := \begin{cases} 0 & \text{if } Q = [l], \\ \widehat{[l+1]} - \widehat{[l]} & \text{if } Q = [l, l+1]. \\ \partial \widehat{I} \diamond \widehat{P} + (-1)^{\dim I} \widehat{I} \diamond \partial \widehat{P} & \text{if } Q = I \times P. \end{cases}$$

Boundary Operator 15

• Boundary operator is a homomorphism $\partial : C_q \to C_{q-1}$ given on generators by

$$\partial \widehat{Q} := \begin{cases} 0 & \text{if } Q = [l], \\ \widehat{[l+1]} - \widehat{[l]} & \text{if } Q = [l, l+1]. \\ \partial \widehat{I} \diamond \widehat{P} + (-1)^{\dim I} \widehat{I} \diamond \partial \widehat{P} & \text{if } Q = I \times P. \end{cases}$$

Theorem.

$$\partial \circ \partial = 0$$

Chain groups of a cubical set 16

• For an elementary chain $c = \sum_{i=1}^{n} \alpha_i \widehat{Q}_i$ we define its support by $|c| := \bigcup \{ Q_i \mid \alpha_i \neq 0 \}$

Chain groups of a cubical set 16

- For an elementary chain $c = \sum_{i=1}^{n} \alpha_i \widehat{Q}_i$ we define its support by $|c| := \bigcup \{ Q_i \mid \alpha_i \neq 0 \}$
- \bullet Given a cubical set X we define the group of q-chains of X by $C_q(X):=\{\,c\in C_q\mid |c|\subset X\,\}.$

Chain groups of a cubical set 16

- For an elementary chain $c = \sum_{i=1}^{n} \alpha_i \widehat{Q}_i$ we define its support by $|c| := \bigcup \{ Q_i \mid \alpha_i \neq 0 \}$
- \bullet Given a cubical set X we define the group of q-chains of X by $C_q(X):=\{\,c\in C_q\mid |c|\subset X\,\}.$
- \bullet Is is easy to verify that we have the induced boundary operator $\partial_q^X: C_q(X) \to C_{q-1}(X).$
• The kernel of ∂_q^X is called the group of q-cycles of X and denoted by $Z_q(X)$.

- The kernel of ∂_q^X is called the group of q-cycles of X and denoted by $Z_q(X)$.
- The image of ∂_{q+1}^X is called the group of q-boundaries of X and denoted by $B_q(X)$.

- The kernel of ∂_q^X is called the group of q-cycles of X and denoted by $Z_q(X)$.
- The image of ∂_{q+1}^X is called the group of q-boundaries of X and denoted by $B_q(X)$.
- \bullet One can verify that $B_q(X) \subset Z_q(X),$ which allows us to define the $q{\rm th}$ homology group of X by

 $H_q(X) := Z_q(X) / B_q(X)$

- The kernel of ∂_q^X is called the group of q-cycles of X and denoted by $Z_q(X)$.
- The image of ∂_{q+1}^X is called the group of q-boundaries of X and denoted by $B_q(X)$.
- \bullet One can verify that $B_q(X) \subset Z_q(X),$ which allows us to define the $q{\rm th}$ homology group of X by

$$H_q(X) := Z_q(X) / B_q(X)$$

 \bullet By homology of X we mean the collection of all homology groups $H(X):=\{H_q(X)\}.$

Immediate algebraization:

Immediate algebraization:

• generate the faces

Immediate algebraization:

- generate the faces
- construct the boundary maps

$$D_k = \begin{bmatrix} 1 & -1 & 0 & 0 & \dots \\ 1 & 0 & 1 & 0 & \dots \\ -1 & 1 & 0 & 0 & \dots \\ 0 & 1 & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

$$D_{k} = \begin{bmatrix} 1 & -1 & 0 & 0 & \dots \\ 1 & 0 & 1 & 0 & \dots \\ -1 & 1 & 0 & 0 & \dots \\ 0 & 1 & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$
$$B_{k} = Q^{-1}D_{k}R$$
$$B_{k} = \begin{bmatrix} 2 & 0 & 0 & 0 & \dots \\ 0 & 1 & 0 & 0 & \dots \\ 0 & 0 & 1 & 0 & \dots \\ 0 & 0 & 1 & 0 & \dots \end{bmatrix}$$

0 0 0 0 ...

Immediate algebraization:

- generate the faces
- construct the boundary maps
- find Smith diagonalization and read Betti numbers

$$D_{k} = \begin{bmatrix} \mathbf{1} & -\mathbf{1} & 0 & 0 & \dots \\ \mathbf{1} & 0 & \mathbf{1} & 0 & \dots \\ -\mathbf{1} & \mathbf{1} & 0 & 0 & \dots \\ 0 & \mathbf{1} & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$
$$B_{k} = Q^{-1}D_{k}R$$
$$\begin{bmatrix} \mathbf{2} & 0 & 0 & 0 & \dots \\ 0 & \mathbf{1} & 0 & 0 & \dots \end{bmatrix}$$

 $B_k = \begin{bmatrix} 0 & 0 & \mathbf{1} & 0 & \dots \\ 0 & 0 & 0 & 0 & \dots \end{bmatrix}$

Immediate algebraization:

- generate the faces
- construct the boundary maps
- find Smith diagonalization and read Betti numbers

Advantages:

- standard linear algebra
- may be easily adapted to homology generators

$$D_{k} = \begin{bmatrix} 1 & -1 & 0 & 0 & \dots \\ 1 & 0 & 1 & 0 & \dots \\ -1 & 1 & 0 & 0 & \dots \\ 0 & 1 & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$
$$B_{k} = Q^{-1}D_{k}R$$
$$B_{k} = \begin{bmatrix} 2 & 0 & 0 & 0 & \dots \\ 0 & 1 & 0 & 0 & \dots \\ 0 & 0 & 1 & 0 & \dots \\ 0 & 0 & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

Immediate algebraization:

- generate the faces
- construct the boundary maps
- find Smith diagonalization and read Betti numbers

Advantages:

- standard linear algebra
- may be easily adapted to homology generators

Problems:

- constructing faces immediately may increase data size
- complexity: Cn^3
- sparseness of matrices may not help (fill-in process)
- C large for sparse matrices (dynamic storage allocation)

Geometric reduction algorithms 22

Geometric Reductions

- Reduce the set so that
 - the representation used is preserved
 - the homology is not changed
- build chain complex
- compute homology

Shaving 23

- If $X = \bigcup \mathcal{X}$ is cubical and $Q \in \mathcal{X}$ is an elementary cube such that $Q \cap X$ is acyclic and $X' = \bigcup (\mathcal{X} \setminus \{Q\})$ then $H(X) \cong H(X')$
- full cubes representation is used!
- acyclicity tests via lookup tables:
 - $-2^{3^{d}-1}$ entries
 - extremely fast in dimension2 and 3

Shaving 23

- If $X = \bigcup \mathcal{X}$ is cubical and $Q \in \mathcal{X}$ is an elementary cube such that $Q \cap X$ is acyclic and $X' = \bigcup (\mathcal{X} \setminus \{Q\})$ then $H(X) \cong H(X')$
- full cubes representation is used!
- acyclicity tests via lookup tables:
 - -2^{3^d-1} entries
 - extremely fast in dimension2 and 3
 - not enough memory for dimension above 3
- partial acyclicity tests in higher dimensions

Acyclic subspace 24

Acyclic subspace 24

Free face reductions 25

foreach σ do if $cbd(\sigma) = \{\tau\}$ then remove(σ); remove(τ); endif; endfor;

- free face a generator with exactly one generator in coboundary
- a combinatorial counterpart of deformation retraction
- on algebraic level:

• free coface - a generator with exactly one generator in boundary

- free coface a generator with exactly one generator in boundary
- one space homology theory with compact supports for locally compact sets (Steenrod 1940, Massey 1978)

- free coface a generator with exactly one generator in boundary
- one space homology theory with compact supports for locally compact sets (Steenrod 1940, Massey 1978)
- combinatorial version (MM, B. Batko, 2006)

Coreduction algorithm 27

```
Q := empty queue;
enqueue(Q,s);
while Q \neq \emptyset do
    s:=\mathsf{dequeue}(Q);
   if \operatorname{bd}_S s = \{t\} then
      remove(s);
      remove(t);
      enqueue(Q, \operatorname{cbd}_{\mathcal{K}} t);
    else if \operatorname{bd}_S s = \emptyset then
      enqueue(Q, \operatorname{cbd}_{\mathcal{K}} s);
    endif;
endwhile;
```

Coreduction algorithm 27

```
Q := empty queue;
enqueue(Q,s);
while Q \neq \emptyset do
    s:=\mathsf{dequeue}(Q);
    if \operatorname{bd}_S s = \{t\} then
      remove(s);
      remove(t);
      enqueue(Q, \operatorname{cbd}_{\mathcal{K}} t);
    else if \operatorname{bd}_S s = \emptyset then
      enqueue(Q, \operatorname{cbd}_{\mathcal{K}} s);
    endif;
endwhile;
```


Coreduction algorithm 28

10

Coreductions for S-complexes 29

• S-complex - a free chain complex with a fixed basis S which allows computation of incidence coefficients $\kappa(s,t)$ directly from the coding of the basis

Coreductions for S-complexes 29

- S-complex a free chain complex with a fixed basis S which allows computation of incidence coefficients $\kappa(s,t)$ directly from the coding of the basis
- Examples: cubical complexes, simplicial complexes

Coreductions for S-complexes 29

- S-complex a free chain complex with a fixed basis S which allows computation of incidence coefficients $\kappa(s,t)$ directly from the coding of the basis
- Examples: cubical complexes, simplicial complexes
- Rectangular CW-complexes (P. Dłotko, T. Kaczynski, MM, T. Wanner, 2010)

Augmentible *S*-complexes ³⁰

Definition. An S-complex is augmentible iff there exists $\epsilon: S_0 \to R$ (augmentation) such that

•
$$\epsilon(t) \neq 0$$
 for $t \in S_0$

•
$$\sum_t \kappa(s,t)\epsilon(t) = 0$$
 for $s \in S_1$

Coreductions may be applied to any augmentible S-complexes.

Coreduction algorithm ₃₁

Unlike torus, coreductions of Bing's House result in a non-augmentible $S\mathchar`-$ complex.

• http://redhom.ii.uj.edu.pl

- http://redhom.ii.uj.edu.pl
- A subproject of CAPD (http://capd.ii.uj.edu.pl)

- http://redhom.ii.uj.edu.pl
- A subproject of CAPD (http://capd.ii.uj.edu.pl)
- A sister project of CHomP (http://chomp.rutgers.edu)

- http://redhom.ii.uj.edu.pl
- A subproject of CAPD (http://capd.ii.uj.edu.pl)
- A sister project of CHomP (http://chomp.rutgers.edu)

Generic homology software based on geometric reductions

- http://redhom.ii.uj.edu.pl
- A subproject of CAPD (http://capd.ii.uj.edu.pl)
- A sister project of CHomP (http://chomp.rutgers.edu)
- Generic homology software based on geometric reductions
 - AS, CR, DMT algorithms

- http://redhom.ii.uj.edu.pl
- A subproject of CAPD (http://capd.ii.uj.edu.pl)
- A sister project of CHomP (http://chomp.rutgers.edu)
- Generic homology software based on geometric reductions
 - AS, CR, DMT algorithms
 - Betti and torsion numbers, homology generators, homology maps, persistence intervals

- http://redhom.ii.uj.edu.pl
- A subproject of CAPD (http://capd.ii.uj.edu.pl)
- A sister project of CHomP (http://chomp.rutgers.edu)
- Generic homology software based on geometric reductions
 - AS, CR, DMT algorithms
 - Betti and torsion numbers, homology generators, homology maps, persistence intervals
 - \mathbb{Z} and \mathbb{Z}_p coefficients

- http://redhom.ii.uj.edu.pl
- A subproject of CAPD (http://capd.ii.uj.edu.pl)
- A sister project of CHomP (http://chomp.rutgers.edu)
- Generic homology software based on geometric reductions
 - AS, CR, DMT algorithms
 - Betti and torsion numbers, homology generators, homology maps, persistence intervals
 - \mathbb{Z} and \mathbb{Z}_p coefficients
 - generic but efficient: for cubical sets, simplicial sets, cubical CW complexes, ...
CAPD::RedHom 32

- http://redhom.ii.uj.edu.pl
- A subproject of CAPD (http://capd.ii.uj.edu.pl)
- A sister project of CHomP (http://chomp.rutgers.edu)

Generic homology software based on geometric reductions

- AS, CR, DMT algorithms
- Betti and torsion numbers, homology generators, homology maps, persistence intervals
- \mathbb{Z} and \mathbb{Z}_p coefficients
- generic but efficient: for cubical sets, simplicial sets, cubical CW complexes, ...
- \bullet written in C++, based on C++ templates and generic programming
- Authors: P. Dłotko, M. Juda, A. Krajniak, MM, H. Wagner, ...

Rectangular CW-complexes 33

Rectangular CW-complexes 34

Theorem. (P. Dłotko, T. Kaczynski, MM, T. Wanner, 2010) Consider a rectangular CW-complex given by a rectangular structure Q. Let P and Q denote two arbitrary rectangles in Q with dim $Q = 1 + \dim P$, and define the number α_{QP} as follows. For d = 1 and Q = [a, b] let

$$\alpha_{QP} := \begin{cases} -1 & \text{if } P = [a] ,\\ 1 & \text{if } P = [b] ,\\ 0 & \text{otherwise} , \end{cases}$$

and for
$$d > 1$$
 set
(1)
 $\alpha_{QP} := \begin{cases} (-1)^{\sum_{i=1}^{j-1} \dim Q_i} \alpha_{Q_j P_j} & \text{if } P < Q \text{ and } P_j < Q_j \ , \\ 0 & \text{otherwise } . \end{cases}$
Then the numbers α_{QP} are incidence numbers for the given

Then the numbers α_{QP} are incidence numbers for the given rectangular CW-complex.

Rectangular CW complex versus cubical approach 35

Numerical examples - manifolds 36

	$T \times S^1$	$(S^1)^3$	$S^1 \times K$	$T \times T$	$P \times K$
dim	5	6	6	6	8
size in millions	0.07	0.10	0.40	2.36	32.05
H_0	Z	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}	Z
H_1	\mathbb{Z}^3	0	$\mathbb{Z}^2 + \mathbb{Z}_2$	\mathbb{Z}^4	$\mathbb{Z} + \mathbb{Z}_2^2$
H_2	\mathbb{Z}^3	0	$\mathbb{Z} + \mathbb{Z}_2$	\mathbb{Z}^6	\mathbb{Z}_2^2
H_3	Z	\mathbb{Z}		\mathbb{Z}^4	\mathbb{Z}_2
H_4				\mathbb{Z}	
Linbox::Smith	130	350	> 600	> 600	-
CHomP ::homcubes	1.3	1.7	10	56	17370
RedHom::CR	0.03	0.04	0.26	2.5	34
RedHom::CR+DMT	0.02	0.08	0.5	1.1	-

Numerical examples - Cahn-Hillard 37

	P0001	P0050	P0100
dim	3	3	3
size in millions	75.56	73.36	71.64
H_0	\mathbb{Z}^7	\mathbb{Z}^2	\mathbb{Z}
H_1	\mathbb{Z}^{6554}	\mathbb{Z}^{2962}	\mathbb{Z}^{1057}
H_2	\mathbb{Z}^2		
Linbox::Smith	> 600	> 600	> 600
CHomP::homcubes	400	360	310
RedHom::CR	18	16	15
RedHom::CR+DMT	8	7	6
RedHom::AS	10	5	3.5

Numerical examples - random sets 38

	d4s8f50	d4s12f50	d4s16f50	d4s20f50
dim	4	4	4	4
size in millions	0.07	0.34	1.04	2.48
H_0	\mathbb{Z}^2	\mathbb{Z}^2	\mathbb{Z}^2	\mathbb{Z}^2
H_1	\mathbb{Z}^2	\mathbb{Z}^{17}	\mathbb{Z}^{30}	\mathbb{Z}^{51}
H_2	\mathbb{Z}^{174}	\mathbb{Z}^{1389}	\mathbb{Z}^{5510}	\mathbb{Z}^{15401}
H_3	\mathbb{Z}^2	\mathbb{Z}^{15}	\mathbb{Z}^{71}	\mathbb{Z}^{179}
Linbox::Smith	120	> 600	> 600	> 600
CHomP::homcubes	1	8.3	41	170
RedHom::CR	0.08	1.4	15	140
RedHom::CR+DMT	0.03	0.16	0.58	2.9

Numerical examples - simplicial sets 39

	random set	S^2	S^5
dim	4	2	5
size in millions	4.8	1.9	4.3
H_0	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}
H_1	\mathbb{Z}^{39}	0	0
H_2	\mathbb{Z}^{84}	\mathbb{Z}	0
H_3			0
H_4			\mathbb{Z}
CHomP::homcubes	830	310	2100
RedHom::CR+DMT	65	11	100

Reduction equivalences 40

Theorem. Assume S' is an S-complex resulting from removing an coreduction pair (a, b) in an S-omplex S. Then the chain maps $\psi^{(a,b)} : R(S) \to R(S')$ and $\iota^{(a,b)} : R(S') \to R(S)$ given by

$$\psi_k^{(a,b)}(c) := \begin{cases} c - \frac{\langle c,a \rangle}{\langle \partial b,a \rangle} \partial b & \text{for } k = \dim b - 1 , \\ c - \langle c,b \rangle b & \text{for } k = \dim b , \\ c & \text{otherwise } , \end{cases}$$

and

$$\iota_k^{(a,b)}(c) \ := \ \left\{ \begin{array}{ll} c - \frac{\langle \partial c, a \rangle}{\langle \partial b, a \rangle} b & \quad \text{for } k = \dim b \\ c & \quad \text{otherwise }, \end{array} \right.$$

are mutually inverse chain equivalences.

Reduction equivalences 40

Theorem. Assume S' is an S-complex resulting from removing an coreduction pair (a, b) in an S-omplex S. Then the chain maps $\psi^{(a,b)} : R(S) \to R(S')$ and $\iota^{(a,b)} : R(S') \to R(S)$ given by

$$\psi_k^{(a,b)}(c) := \begin{cases} c - \frac{\langle c,a \rangle}{\langle \partial b,a \rangle} \partial b & \text{for } k = \dim b - 1 , \\ c - \langle c,b \rangle b & \text{for } k = \dim b , \\ c & \text{otherwise } , \end{cases}$$

and

$$\iota_k^{(a,b)}(c) \ := \ \left\{ \begin{array}{ll} c - \frac{\langle \partial c, a \rangle}{\langle \partial b, a \rangle} b & \quad \text{for } k = \dim b \\ c & \quad \text{otherwise }, \end{array} \right.$$

are mutually inverse chain equivalences.

• the reduced S-complex S^f — the homology model of S as a convenient model to solve the problems of decomposing homology classes on generators.

- the reduced S-complex S^f the homology model of S as a convenient model to solve the problems of decomposing homology classes on generators.
- $\pi^f : R(S) \to R(S^f)$ and $\iota^f : R(S^f) \to R(S)$ mutually inverse chain equivalences obtained by composing the maps $\pi^{(a,b)}$ and $\iota^{(a,b)}$.

- the reduced S-complex S^f the homology model of S as a convenient model to solve the problems of decomposing homology classes on generators.
- $\pi^f : R(S) \to R(S^f)$ and $\iota^f : R(S^f) \to R(S)$ mutually inverse chain equivalences obtained by composing the maps $\pi^{(a,b)}$ and $\iota^{(a,b)}$.
- ullet used to transport homology classes between $H_*(S)$ and $H_*(S^f)$

- the reduced S-complex S^f the homology model of S as a convenient model to solve the problems of decomposing homology classes on generators.
- $\pi^f : R(S) \to R(S^f)$ and $\iota^f : R(S^f) \to R(S)$ mutually inverse chain equivalences obtained by composing the maps $\pi^{(a,b)}$ and $\iota^{(a,b)}$.
- \bullet used to transport homology classes between $H_*(S)$ and $H_*(S^f)$

The cost of transporting one generator through π^f or ι^f in general may be quadratic.

- the reduced S-complex S^f the homology model of S as a convenient model to solve the problems of decomposing homology classes on generators.
- $\pi^f : R(S) \to R(S^f)$ and $\iota^f : R(S^f) \to R(S)$ mutually inverse chain equivalences obtained by composing the maps $\pi^{(a,b)}$ and $\iota^{(a,b)}$.
- \bullet used to transport homology classes between $H_*(S)$ and $H_*(S^f)$

The cost of transporting one generator through π^f or ι^f in general may be quadratic.

In the case of Free Face Reduction Algorithm and Free Coface Reduction Algorithm it is linear!

•
$$S_q = \{ s_1^q, s_2^q, \dots s_{r_q}^q \}.$$

•
$$S_q = \{ s_1^q, s_2^q, \dots, s_{r_q}^q \}$$
.
• $\{ [u_1], [u_2], \dots, [u_n] \}$ – generators of the homology group $H_q(S)$.

- $S_q = \{ s_1^q, s_2^q, \dots s_{r_q}^q \}.$
- { $[u_1], [u_2], \ldots, [u_n]$ } generators of the homology group $H_q(S)$.
- Task: decompose $[z] \in H_q(X)$ on homology generators

$$[z] = \sum_{i=1}^{n} x_i[u_i]$$

- $S_q = \{ s_1^q, s_2^q, \dots s_{r_q}^q \}.$
- { $[u_1], [u_2], \ldots, [u_n]$ } generators of the homology group $H_q(S)$.
- Task: decompose $[z] \in H_q(X)$ on homology generators

$$[z] = \sum_{i=1}^{n} x_i[u_i]$$

• Linear algebra problem

$$z = \sum_{i=1}^{n} x_i u_i + \partial c$$

with unknown variables $x_1, x_2, \ldots, x_n \in \mathbb{Z}$ and $c \in R_{q+1}(S)$.

$$z = \sum_{j=1}^{r_q} z_j s_j^q, \quad u_i = \sum_{j=1}^{r_q} u_{ij} s_j^q, \quad c = \sum_{k=1}^{r_{q+1}} y_k s_k^{q+1}$$
$$\partial s_k^{q+1} = \sum_{j=1}^{r_q} a_{kj} s_j^q$$
$$\partial c = \sum_{j=1}^{r_q} \left(\sum_{k=1}^{r_{q+1}} a_{kj} y_k\right) s_j^q$$

$$z = \sum_{j=1}^{r_q} z_j s_j^q, \quad u_i = \sum_{j=1}^{r_q} u_{ij} s_j^q, \quad c = \sum_{k=1}^{r_{q+1}} y_k s_k^{q+1}$$
$$\partial s_k^{q+1} = \sum_{j=1}^{r_q} a_{kj} s_j^q$$
$$\partial c = \sum_{j=1}^{r_q} \left(\sum_{k=1}^{r_{q+1}} a_{kj} y_k\right) s_j^q$$

Thus, we get a system of r_q linear equations with $n + r_{q+1}$ unknowns

$$z_j = \sum_{i=1}^n u_{ij} x_i + \sum_{k=1}^{r_{q+1}} a_{kj} y_k$$
 for $j = 1, 2, \dots r_q$.

- \bullet In case of large S the cost is huge!
- Solution: transport the problem via π^f to homology model and solve it there

• X, Y – cubical complexes

- X, Y cubical complexes
- $g: X \to Y$ is cubical if maps elementary cubes to elementary cubes.
- $\bullet~g$ induces chain map $g_{\#}:R(X)\rightarrow R(Y)$

- X, Y cubical complexes
- $g: X \to Y$ is cubical if maps elementary cubes to elementary cubes.
- $\bullet~g$ induces chain map $g_{\#}:R(X)\rightarrow R(Y)$
- examples of interest: inclusions and projections

- X, Y cubical complexes
- $g: X \to Y$ is cubical if maps elementary cubes to elementary cubes.
- $\bullet~g$ induces chain map $g_{\#}:R(X)\rightarrow R(Y)$
- examples of interest: inclusions and projections
- $U := \{ [u_1], [u_2], \dots [u_m] \}$ and $W := \{ [w_1], [w_2], \dots [w_n] \}$ bases of $H_q(X)$ and $H_q(Y)$

- X, Y cubical complexes
- $g: X \to Y$ is cubical if maps elementary cubes to elementary cubes.
- $\bullet~g$ induces chain map $g_{\#}:R(X)\rightarrow R(Y)$
- examples of interest: inclusions and projections
- $U := \{ [u_1], [u_2], \dots [u_m] \}$ and $W := \{ [w_1], [w_2], \dots [w_n] \}$ bases of $H_q(X)$ and $H_q(Y)$
- To find the matrix of g_* ecompose $g_{\#}(u_i)$ on generators in W

- X, Y cubical complexes
- $g: X \to Y$ is cubical if maps elementary cubes to elementary cubes.
- $\bullet~g$ induces chain map $g_{\#}:R(X)\rightarrow R(Y)$
- examples of interest: inclusions and projections
- $U := \{ [u_1], [u_2], \dots [u_m] \}$ and $W := \{ [w_1], [w_2], \dots [w_n] \}$ bases of $H_q(X)$ and $H_q(Y)$
- \bullet To find the matrix of g_* ecompose $g_{\#}(u_i)$ on generators in W
- Using the diagram

we can solve the problem in the homology model Y^f , where it is much simpler.

Computing Homology of Maps 45

In principle, computing homology of a map $f : X \to Y$ is a three step procedure:

- (1) Find a finite representation of f
- (2) Use it to build the chain map
- (3) Compute the map in homology from the chain map

Computing Homology of Maps 45

In principle, computing homology of a map $f : X \to Y$ is a three step procedure:

- (1) Find a finite representation of f
- (2) Use it to build the chain map
- (3) Compute the map in homology from the chain map

Let $X = |\mathcal{X}|$ be a full cubical set with representation \mathcal{X} and let $f : X \to X$ be a continuous map. We say that $\mathcal{F} : \mathcal{X} \rightrightarrows \mathcal{X}$ is a representation of f if $f(Q) \subset \operatorname{int} |\mathcal{F}(Q)|.$

Let $X = |\mathcal{X}|$ be a full cubical set with representation \mathcal{X} and let $f : X \to X$ be a continuous map. We say that $\mathcal{F} : \mathcal{X} \rightrightarrows \mathcal{X}$ is a representation of f if

$$f(Q) \subset \operatorname{int} |\mathcal{F}(Q)|.$$

and for each $x \in X$ the set

$$\lceil \mathcal{F} \rceil(x) := \bigcup \left\{ |\mathcal{F}(Q)| \mid x \in Q \in \mathcal{X} \right\}$$

is acyclic.

Let $X = |\mathcal{X}|$ be a full cubical set with representation \mathcal{X} and let $f : X \to X$ be a continuous map. We say that $\mathcal{F} : \mathcal{X} \rightrightarrows \mathcal{X}$ is a representation of f if

$$f(Q) \subset \operatorname{int} |\mathcal{F}(Q)|.$$

and for each $x \in X$ the set

$$\lceil \mathcal{F} \rceil(x) := \bigcup \left\{ |\mathcal{F}(Q)| \mid x \in Q \in \mathcal{X} \right\}$$

is acyclic.

A representation for a given \mathcal{X} may not exist. However, under a sufficiently good subdivision, the representation always exists.

Let $X = |\mathcal{X}|$ be a full cubical set with representation \mathcal{X} and let $f : X \to X$ be a continuous map. We say that $\mathcal{F} : \mathcal{X} \rightrightarrows \mathcal{X}$ is a representation of f if

$$f(Q) \subset \operatorname{int} |\mathcal{F}(Q)|.$$

and for each $x \in X$ the set

$$\lceil \mathcal{F} \rceil(x) := \bigcup \left\{ |\mathcal{F}(Q)| \mid x \in Q \in \mathcal{X} \right\}$$

is acyclic.

A representation for a given \mathcal{X} may not exist. However, under a sufficiently good subdivision, the representation always exists.

Theorem. (Allili, Kaczynski, 2000, Kaczynski, Mischaikow, MM 2004) If \mathcal{F} is a representation of f, then there is an algorithm which transforms \mathcal{F} into a chain map whose homology is the homology of f.

Graph approach (Granas and L. Górniewicz, 1981) 47

The homology map algorithm (Mischaikow, MM, Pilarczyk 2005) 48

- (1) Construct a representation \mathcal{F} of $f: X \to Y$.
- (2) Construct the graph G of $F := \lceil \mathcal{F} \rceil$.
- (3) If the homologies of the values of F are not trivial, refine the grid and go to 1.
- (4) Apply shaving to X, Y and G in such a way that the shaved G' is the graph of an acyclic mv map $F': X' \to Y'$
- (5) Find the homologies of the projections $p: G \to X$ and $q: G \to Y$. (6) Return $H_*(q)H_*(p)^{-1}$

The homology map algorithm (Mischaikow, MM, Pilarczyk 2005) 48

- (1) Construct a representation \mathcal{F} of $f: X \to Y$.
- (2) Construct the graph G of $F := \lceil \mathcal{F} \rceil$.
- (3) If the homologies of the values of F are not trivial, refine the grid and go to 1.
- (4) Apply shaving to X, Y and G in such a way that the shaved G' is the graph of an acyclic mv map $F': X' \to Y'$
- (5) Find the homologies of the projections $p: G \to X$ and $q: G \to Y$. (6) Return $H_*(q)H_*(p)^{-1}$
 - Pilarczyk (2005) implementation
 - satisfactorily fast for a class of practical problems
 - remains computationally most expensive part in applications in dynamics
 - preserving the acyclicity of values when applying reductions is computationally expensive
Coreduction model approach, MM 2010 49

- \bullet Using coreductions construct homology models of $X,\,Y,$ and G
- \bullet Using homology models find the homology of the projections $p:G \to X$ and $q:G \to Y$
- Compute the inverse of p_* and return $q_*p_*^{-1}$

No need to preserve the acyclicity under reductionssignificantly faster than the previous graph approach

Graph approach versus coreduction model approach 50

Set	Emb	Size	CHomP	RedHom	speedup
	Dim	$\times 10^{6}$	homcubes	CR	
z2torus8.map	6	3.65	10.3	1.5	7
z2torus12.map	6	7.75	25.6	3.2	8
z2torus16.map	6	14.13	54.5	6.8	8
z2torus19.map	6	23.29	121.0	11.7	10

Alternative based on Čech structures (outline) 51

- \bullet choose a Čech structure ${\mathcal X}$ on X
- \bullet for $Q\in \mathcal{X}$ take $\mathcal{F}(Q)$ as a convex enclosure of f(Q) obtained via rigorous numerics
- $\bullet \ \mathcal{F}: K(\mathcal{X}) \to K(\mathcal{X} \cup \mathcal{F}(\mathcal{X}))$ acts as a simplicial map
- \bullet the homology of f is computed when $K(\mathcal{X}) \subset K(\mathcal{X} \cup \mathcal{F}(\mathcal{X}))$ induces an isomorphism
- this is guaranteed when the enclosure is good enough

Alternative based on Čech structures (outline) 51

- \bullet choose a Čech structure ${\mathcal X}$ on X
- \bullet for $Q\in \mathcal{X}$ take $\mathcal{F}(Q)$ as a convex enclosure of f(Q) obtained via rigorous numerics
- $\bullet \ \mathcal{F}: K(\mathcal{X}) \to K(\mathcal{X} \cup \mathcal{F}(\mathcal{X}))$ acts as a simplicial map
- \bullet the homology of f is computed when $K(\mathcal{X}) \subset K(\mathcal{X} \cup \mathcal{F}(\mathcal{X}))$ induces an isomorphism
- this is guaranteed when the enclosure is good enough

Alternative based on Čech structures 52

Example: consider

 $f:\mathbb{C}\ni z\to z^2\in\mathbb{C}$

Alternative based on Čech structures 52

Example: consider

 $f: \mathbb{C} \ni z \to z^2 \in \mathbb{C}$

Cubical persistence via coreductions and inclusions 53

- Assume field coefficients
- Compute the maps induced in homology by inclusions
- Find the compositions and ranks of the respective matrices

$$eta_q^{i,j} := \mathsf{rank} \ \iota_q^{i,j},$$

 \bullet Compute the number of $(i,j)\mbox{-} persistence$ intervals from formula

$$\mathsf{pi}_q(i,j) = \left(\beta_q^{i,j-1} - \beta_q^{i-1,j-1}\right) - \left(\beta_q^{i,j} - \beta_q^{i-1,j}\right)$$

• levelwise coreductions

- levelwise coreductions
- seperate queue for BFS on each level

- levelwise coreductions
- seperate queue for BFS on each level
- selection always from the lowest level non-empty queue

- levelwise coreductions
- seperate queue for BFS on each level
- selection always from the lowest level non-empty queue
- \bullet result: coreductions for all sublevel sets together in $O(n\log^* n)$ time

- levelwise coreductions
- seperate queue for BFS on each level
- selection always from the lowest level non-empty queue
- result: coreductions for all sublevel sets together in $O(n \log^* n)$ time
- \bullet Complexity of finding persistence intervals on the plane is $O(n\log^* n)$

Timings 55

Grid	Levels	classical	RedHom	RedHom
		approach (*)	CR-incl.	CR-direct
1024×1024	17	3299.0	470.0	3.4
2048×2048	18	36187.0	8012.0	13.0
$100 \times 100 \times 100$	25	60407.0	4025.0	-

(*) - implementation of Edelsbrunner-Letscher-Zomorodian algorithm for cubical sets by V. Nanda

References 56

- MM, P. Pilarczyk, N. Żelazna, Homology algorithm based on acyclic subspace, *Computers and Mathematics with Applications* (2008).
- MM, B. Batko, Coreduction homology algorithm, *Discrete and Computational Geometry* (2009).
- K. Mischaikow, MM, P. Pilarczyk, Graph Approach to the Computation of the Homology of Continuous Maps, *Foundations of Computational Mathematics* (2005).
- MM, Čech Type Approach to Computing Homology of Maps, *Discrete and Computational Geometry* (2010).
- P. Dłotko, T. Kaczynski, MM, T. Wanner, Coreduction Homology Algorithm for Regular CW-Complexes, *Discrete and Computational Geometry* (2011).
- MM, T. Wanner, Coreduction Homology Algorithm for Inclusions and Persistence, Computers and Mathematics with Applications (2010).
- S. Harker, K. Mischaikow, MM, V. Nanda, H. Wagner, M. Juda, P. Dłotko, The Efficiency of a Homology Algorithm based on Discrete Morse Theory and Coreductions, *Proceedings CTIC 2010* (2010).
- A. Krajniak, MM, T. Wanner, Direct coreduction approach to persistence, in preparation.