# Computational Homology in Topological Dynamics 

ACAT School, Bologna, Italy<br>MAY 26, 2012

Marian Mrozek
Jagiellonian University, Kraków

## Outline ${ }_{2}$

- Dynamical systems
- Rigorous numerics of dynamical systems
- Homological invariants of dynamical systems
- Computing homological invariants
- Homology algorithms for subsets of $\mathbb{R}^{d}$
- Homology algorithms for maps of subsets of $\mathbb{R}^{d}$
- Applications


## Goal $_{3}$

Input: representation of a subset $X \subset \mathbb{R}^{d}$
Output: Betti numbers, torsion coefficients, homology generators

## Goal $_{3}$

Input: representation of a subset $X \subset \mathbb{R}^{d}$
Output: Betti numbers, torsion coefficients, homology generators

Input: representation of a continuous map $f: X \rightarrow Y$ of subsets of $\mathbb{R}^{d}$
Output: matrix of map induced in homology

## Prototype homology algorithm 4

In principle, the homology algorithm may look as follows:

## Prototype homology algorithm 4

In principle, the homology algorithm may look as follows:
(1) Triangulate the space

## Prototype homology algorithm 4

In principle, the homology algorithm may look as follows:
(1) Triangulate the space
(2) Construct the matrices of boundary maps

## Prototype homology algorithm 4

In principle, the homology algorithm may look as follows:
(1) Triangulate the space
(2) Construct the matrices of boundary maps
(3) Compute the kernel and the image

## Prototype homology algorithm 4

In principle, the homology algorithm may look as follows:
(1) Triangulate the space
(2) Construct the matrices of boundary maps
(3) Compute the kernel and the image
(4) Compute the quotient space

## Set representation ${ }_{5}$



## Simplicial complex <br> - classical

## Set representation ${ }_{6}$



Simplicial complex

- classical

Cubical set

- typical in imaging and rigorous numerics
- very efficient and fast representation (bitmaps)


## Set representation ${ }_{7}$



## Simplicial complex

- classical


## Cubical set

- typical in imaging and rigorous numerics
- very efficient and fast representation (bitmaps)
General polyhedrons
- most general
- obtaining the chain complex is not straightforward


## Cube triangulation ${ }_{8}$

- How many simplices do we need to triangulate a $d$-cube?


## Cube triangulation ${ }_{8}$

- How many simplices do we need to triangulate a $d$-cube?
- Not more than $d$ ! but can we do better?


## Cube triangulation $_{8}$

- How many simplices do we need to triangulate a $d$-cube?
- Not more than $d$ ! but can we do better?



## Cube triangulation ${ }_{9}$

Theorem. Hughes, Anderson (1995), Bliss, Su (2005)

| d | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Theorem. Smith (2000)

$$
C(d) \geq \frac{6^{d / 2} d!}{2(d+1)^{(d+1) / 2}}
$$

## Input ${ }_{10}$

Algebraists expect matrices of boundary maps as input of homology computations.

## Input ${ }_{10}$

Algebraists expect matrices of boundary maps as input of homology computations.

- On input: a set represented as a list of top dimensional cells (cubes, simplices, ...)
- Generation of faces, incidence coefficients and boundary maps, whenever necessary, must be considered a part of the job!


## Elementary intervals and cubes ${ }_{11}$

- An elementary interval is an interval $[k, l] \subset \mathbb{R}$ such that $l=k$ (degenerate) or $l=k+1$ (nondegenerate).


## Elementary intervals and cubes ${ }_{11}$

- An elementary interval is an interval $[k, l] \subset \mathbb{R}$ such that $l=k$ (degenerate) or $l=k+1$ (nondegenerate).
- An elementary cube $Q$ in $\mathbb{R}^{d}$ is

$$
I_{1} \times I_{2} \times \cdots \times I_{d} \subset \mathbb{R}^{d} .
$$

## Elementary intervals and cubes ${ }_{11}$

- An elementary interval is an interval $[k, l] \subset \mathbb{R}$ such that $l=k$ (degenerate) or $l=k+1$ (nondegenerate).
- An elementary cube $Q$ in $\mathbb{R}^{d}$ is

$$
I_{1} \times I_{2} \times \cdots \times I_{d} \subset \mathbb{R}^{d} .
$$

- The dimension of $Q$ is the number of nondegenerate $I_{i}$.


## Elementary intervals and cubes ${ }_{11}$

- An elementary interval is an interval $[k, l] \subset \mathbb{R}$ such that $l=k$ (degenerate) or $l=k+1$ (nondegenerate).
- An elementary cube $Q$ in $\mathbb{R}^{d}$ is

$$
I_{1} \times I_{2} \times \cdots \times I_{d} \subset \mathbb{R}^{d} .
$$

- The dimension of $Q$ is the number of nondegenerate $I_{i}$.
- $\mathcal{K}$ - the set of all elementary cubes in $\mathbb{R}^{d}$


## Elementary intervals and cubes ${ }_{11}$

- An elementary interval is an interval $[k, l] \subset \mathbb{R}$ such that $l=k$ (degenerate) or $l=k+1$ (nondegenerate).
- An elementary cube $Q$ in $\mathbb{R}^{d}$ is

$$
I_{1} \times I_{2} \times \cdots \times I_{d} \subset \mathbb{R}^{d} .
$$

- The dimension of $Q$ is the number of nondegenerate $I_{i}$.
- $\mathcal{K}$ - the set of all elementary cubes in $\mathbb{R}^{d}$
- $\mathcal{K}_{k}$ - the set of all elementary cubes in $\mathbb{R}^{d}$ of dimension $k$


## Elementary intervals and cubes ${ }_{11}$

- An elementary interval is an interval $[k, l] \subset \mathbb{R}$ such that $l=k$ (degenerate) or $l=k+1$ (nondegenerate).
- An elementary cube $Q$ in $\mathbb{R}^{d}$ is

$$
I_{1} \times I_{2} \times \cdots \times I_{d} \subset \mathbb{R}^{d}
$$

- The dimension of $Q$ is the number of nondegenerate $I_{i}$.
- $\mathcal{K}$ - the set of all elementary cubes in $\mathbb{R}^{d}$
- $\mathcal{K}_{k}$ — the set of all elementary cubes in $\mathbb{R}^{d}$ of dimension $k$
- An elementary cube is full if its dimension is $d$.


## Elementary intervals and cubes ${ }_{11}$

- An elementary interval is an interval $[k, l] \subset \mathbb{R}$ such that $l=k$ (degenerate) or $l=k+1$ (nondegenerate).
- An elementary cube $Q$ in $\mathbb{R}^{d}$ is

$$
I_{1} \times I_{2} \times \cdots \times I_{d} \subset \mathbb{R}^{d}
$$

- The dimension of $Q$ is the number of nondegenerate $I_{i}$.
- $\mathcal{K}$ - the set of all elementary cubes in $\mathbb{R}^{d}$
- $\mathcal{K}_{k}$ - the set of all elementary cubes in $\mathbb{R}^{d}$ of dimension $k$
- An elementary cube is full if its dimension is $d$.
- For $\mathcal{A} \subset \mathcal{K}$ we use notation $|\mathcal{A}|:=\bigcup \mathcal{A}$.


## Elementary intervals and cubes ${ }_{11}$

- An elementary interval is an interval $[k, l] \subset \mathbb{R}$ such that $l=k$ (degenerate) or $l=k+1$ (nondegenerate).
- An elementary cube $Q$ in $\mathbb{R}^{d}$ is

$$
I_{1} \times I_{2} \times \cdots \times I_{d} \subset \mathbb{R}^{d}
$$

- The dimension of $Q$ is the number of nondegenerate $I_{i}$.
- $\mathcal{K}$ - the set of all elementary cubes in $\mathbb{R}^{d}$
- $\mathcal{K}_{k}$ — the set of all elementary cubes in $\mathbb{R}^{d}$ of dimension $k$
- An elementary cube is full if its dimension is $d$.
- For $\mathcal{A} \subset \mathcal{K}$ we use notation $|\mathcal{A}|:=\bigcup \mathcal{A}$.
- For $A \subset \mathbb{R}^{d}$ we use notation $\mathcal{K}(A):=\{Q \in \mathcal{K} \mid Q \subset A\}$.


## Cubical Chains ${ }_{12}$

- Given an elementary cube $Q$ we define the associated elementary chain by

$$
\widehat{Q}(P)= \begin{cases}1 & \text { if } P=Q \\ 0 & \text { otherwise }\end{cases}
$$

## Cubical Chains ${ }_{12}$

- Given an elementary cube $Q$ we define the associated elementary chain by

$$
\widehat{Q}(P)= \begin{cases}1 & \text { if } P=Q \\ 0 & \text { otherwise. }\end{cases}
$$

- A cubical chain is a finite linear combination of elementary chains of the same dimension, called the dimension of the chain.


## Cubical Chains ${ }_{12}$

- Given an elementary cube $Q$ we define the associated elementary chain by

$$
\widehat{Q}(P)= \begin{cases}1 & \text { if } P=Q \\ 0 & \text { otherwise } .\end{cases}
$$

- A cubical chain is a finite linear combination of elementary chains of the same dimension, called the dimension of the chain.
- All cubical chains of dimension $q$ form an Abelian group, denoted $C_{q}$ and called the group of $q$-chains.


## Cubical Product ${ }_{13}$

- Given two elementary chains $\widehat{P}, \widehat{Q}$, we define their cubical product by

$$
\widehat{P} \diamond \widehat{Q}:=\widehat{P \times Q}
$$

and we extend this definition linearly to arbitrary chains.

## Cubical Product ${ }_{14}$



## Boundary Operator ${ }_{15}$

- Boundary operator is a homomorphism $\partial: C_{q} \rightarrow C_{q-1}$ given on generators by

$$
\partial \widehat{Q}:= \begin{cases}0 & \text { if } Q=[l] \\ \widehat{[l+1]}-\widehat{[l]} & \text { if } Q=[l, l+1] \\ \partial \widehat{I} \diamond \widehat{P}+(-1)^{\operatorname{dim} I \widehat{I} \diamond \partial \widehat{P}} & \text { if } Q=I \times P .\end{cases}
$$

## Boundary Operator ${ }_{15}$

- Boundary operator is a homomorphism $\partial: C_{q} \rightarrow C_{q-1}$ given on generators by

$$
\partial \widehat{Q}:= \begin{cases}0 & \text { if } Q=[l] \\ \widehat{[l+1]}-\widehat{[l]} & \text { if } Q=[l, l+1] . \\ \partial \widehat{I} \diamond \widehat{P}+(-1)^{\operatorname{dim} I \widehat{I} \diamond \partial \widehat{P}} & \text { if } Q=I \times P .\end{cases}
$$

Theorem.

$$
\partial \circ \partial=0
$$

## Chain groups of a cubical set ${ }_{16}$

- For an elementary chain $c=\sum_{i=1}^{n} \alpha_{i} \widehat{Q}_{i}$ we define its support by

$$
|c|:=\bigcup\left\{Q_{i} \mid \alpha_{i} \neq 0\right\}
$$

## Chain groups of a cubical set ${ }_{16}$

- For an elementary chain $c=\sum_{i=1}^{n} \alpha_{i} \widehat{Q}_{i}$ we define its support by

$$
|c|:=\bigcup\left\{Q_{i} \mid \alpha_{i} \neq 0\right\}
$$

- Given a cubical set $X$ we define the group of $q$-chains of $X$ by

$$
C_{q}(X):=\left\{c \in C_{q}| | c \mid \subset X\right\} .
$$

## Chain groups of a cubical set ${ }_{16}$

- For an elementary chain $c=\sum_{i=1}^{n} \alpha_{i} \widehat{Q}_{i}$ we define its support by

$$
|c|:=\bigcup\left\{Q_{i} \mid \alpha_{i} \neq 0\right\}
$$

- Given a cubical set $X$ we define the group of $q$-chains of $X$ by

$$
C_{q}(X):=\left\{c \in C_{q}| | c \mid \subset X\right\} .
$$

- Is is easy to verify that we have the induced boundary operator

$$
\partial_{q}^{X}: C_{q}(X) \rightarrow C_{q-1}(X) .
$$

## Cubical Homology ${ }_{17}$

- The kernel of $\partial_{q}^{X}$ is called the group of $q$-cycles of $X$ and denoted by $Z_{q}(X)$.


## Cubical Homology ${ }_{17}$

- The kernel of $\partial_{q}^{X}$ is called the group of $q$-cycles of $X$ and denoted by $Z_{q}(X)$.
- The image of $\partial_{q+1}^{X}$ is called the group of $q$-boundaries of $X$ and denoted by $B_{q}(X)$.


## Cubical Homology ${ }_{17}$

- The kernel of $\partial_{q}^{X}$ is called the group of $q$-cycles of $X$ and denoted by $Z_{q}(X)$.
- The image of $\partial_{q+1}^{X}$ is called the group of $q$-boundaries of $X$ and denoted by $B_{q}(X)$.
- One can verify that $B_{q}(X) \subset Z_{q}(X)$, which allows us to define the $q$ th homology group of $X$ by

$$
H_{q}(X):=Z_{q}(X) / B_{q}(X)
$$

## Cubical Homology ${ }_{17}$

- The kernel of $\partial_{q}^{X}$ is called the group of $q$-cycles of $X$ and denoted by $Z_{q}(X)$.
- The image of $\partial_{q+1}^{X}$ is called the group of $q$-boundaries of $X$ and denoted by $B_{q}(X)$.
- One can verify that $B_{q}(X) \subset Z_{q}(X)$, which allows us to define the $q$ th homology group of $X$ by

$$
H_{q}(X):=Z_{q}(X) / B_{q}(X)
$$

- By homology of $X$ we mean the collection of all homology groups $H(X):=\left\{H_{q}(X)\right\}$.


## Standard approach ${ }_{18}$

Immediate algebraization:

## Standard approach ${ }_{19}$

## Immediate algebraization:

- generate the faces


## Standard approach 20

## Immediate algebraization:

- generate the faces
- construct the boundary maps

$$
D_{k}=\left[\begin{array}{ccccc}
\mathbf{1} & -\mathbf{1} & 0 & 0 & \ldots \\
\mathbf{1} & 0 & \mathbf{1} & 0 & \ldots \\
-\mathbf{1} & \mathbf{1} & 0 & 0 & \ldots \\
0 & \mathbf{1} & 0 & 0 & \ldots \\
. & . & . & . & .
\end{array}\right]
$$

## Standard approach ${ }_{21}$

## Immediate algebraization:

- generate the faces
- construct the boundary maps
- find Smith diagonalization and read Betti numbers

$$
\begin{aligned}
D_{k} & =\left[\begin{array}{ccccc}
\mathbf{1} & -\mathbf{1} & 0 & 0 & \ldots \\
\mathbf{1} & 0 & \mathbf{1} & 0 & \ldots \\
-\mathbf{1} & \mathbf{1} & 0 & 0 & \ldots \\
0 & \mathbf{1} & 0 & 0 & \ldots \\
\cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right] \\
B_{k} & =Q^{-1} D_{k} R \\
B_{k} & =\left[\begin{array}{ccccc}
\mathbf{2} & 0 & 0 & 0 & \ldots \\
0 & \mathbf{1} & 0 & 0 & \ldots \\
0 & 0 & \mathbf{1} & 0 & \ldots \\
0 & 0 & 0 & 0 & \ldots \\
\cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right]
\end{aligned}
$$

## Standard approach 21

$$
B_{k}=Q^{-1} D_{k} R
$$

$$
B_{k}=\left[\begin{array}{ccccc}
\mathbf{2} & 0 & 0 & 0 & \ldots \\
0 & \mathbf{1} & 0 & 0 & \ldots \\
0 & 0 & \mathbf{1} & 0 & \ldots \\
0 & 0 & 0 & 0 & \ldots \\
\cdot & \cdot & . & . & \cdot
\end{array}\right]
$$

## Immediate algebraization:

- generate the faces
- construct the boundary maps
- find Smith diagonalization and read Betti numbers
Advantages:
- standard linear algebra
- may be easily adapted to homology generators


## Standard approach ${ }_{21}$



## Immediate algebraization:

- generate the faces
- construct the boundary maps
- find Smith diagonalization and read Betti numbers
Advantages:
- standard linear algebra
- may be easily adapted to homology generators
Problems:
- constructing faces immediately may increase data size
- complexity: $C n^{3}$
- sparseness of matrices may not help (fill-in process)
- $C$ large for sparse matrices (dynamic storage allocation)


## Geometric reduction algorithms 22



## Geometric Reductions

- Reduce the set so that
- the representation used is preserved
- the homology is not changed
- build chain complex
- compute homology


## Shaving ${ }_{23}$

- If $X=\bigcup \mathcal{X}$ is cubical and $Q \in \mathcal{X}$ is an elementary cube such that $Q \cap X$ is acyclic and $X^{\prime}=\bigcup(\mathcal{X} \backslash\{Q\})$ then $H(X) \cong H\left(X^{\prime}\right)$

- full cubes representation is used!
- acyclicity tests via lookup tables:
$-2^{3^{d}-1}$ entries
- extremely fast in dimension 2 and 3


## Shaving ${ }_{23}$

- If $X=\bigcup \mathcal{X}$ is cubical and $Q \in \mathcal{X}$ is an elementary cube such that $Q \cap X$ is acyclic and $X^{\prime}=\bigcup(\mathcal{X} \backslash\{Q\})$ then $H(X) \cong H\left(X^{\prime}\right)$

- full cubes representation is used!
- acyclicity tests via lookup tables:
$-2^{3^{d}-1}$ entries
- extremely fast in dimension 2 and 3
- not enough memory for dimension above 3
- partial acyclicity tests in higher dimensions

Acyclic subspace ${ }_{24}$


Acyclic subspace ${ }_{24}$


## Free face reductions ${ }_{25}$

foreach $\sigma$ do
if $\operatorname{cbd}(\sigma)=\{\tau\}$ then remove $(\sigma)$; remove $(\tau)$; endif;
endfor;


- free face - a generator with exactly one generator in coboundary
- a combinatorial counterpart of deformation retraction
- on algebraic level:
$\left[\begin{array}{ccccccccc}\mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & \ldots \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & 0 & 0 & \mathbf{1} & 0 & 0 & \ldots \\ 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\ 0 & \mathbf{1} & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \ldots \\ 0 & 0 & \mathbf{1} & 0 & 0 & \mathbf{1} & 0 & 0 & \ldots \\ 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 & \ldots \\ 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \ldots \\ 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & \ldots \\ 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \ldots \\ 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \ldots \\ . & . & . & . & . & . & . & . & \ldots \\ . & . & . & . & . & . & . & . & \ldots \\ . & . & . & . & . & . & . & . & \ldots\end{array}\right]$

Dual reductions? ${ }_{26}$

$$
\left[\begin{array}{ccccccccc}
\mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & \ldots \\
\mathbf{1} & \mathbf{1} & \mathbf{1} & 0 & 0 & 1 & 0 & 0 & \ldots \\
0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
0 & \mathbf{1} & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \ldots \\
0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & \ldots \\
0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 & \ldots \\
0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \ldots \\
0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \ldots \\
. & . & . & . & . & . & . & . & \ldots \\
. & . & . & . & . & . & . & . & \ldots \\
. & . & . & . & . & . & . & . & \ldots
\end{array}\right]
$$

## Dual reductions?

$\left[\begin{array}{ccccccccc}\mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & \ldots \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & 0 & 0 & 1 & 0 & 0 & \ldots \\ 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\ 0 & \mathbf{1} & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \ldots \\ 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & \ldots \\ 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 & \ldots \\ 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \ldots \\ 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & \ldots \\ 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \ldots \\ 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \ldots \\ . & . & . & . & . & . & . & . & \ldots \\ . & . & . & . & . & . & . & . & \ldots \\ . & . & . & . & . & . & . & . & \ldots\end{array}\right]$

- free coface - a generator with exactly one generator in boundary


## Dual reductions?

$\left[\begin{array}{ccccccccc}\mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & \ldots \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & 0 & 0 & 1 & 0 & 0 & \ldots \\ 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\ 0 & \mathbf{1} & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \ldots \\ 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & \ldots \\ 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 & \ldots \\ 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \ldots \\ 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & \ldots \\ 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \ldots \\ 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \ldots \\ . & . & . & . & . & . & . & . & \ldots \\ . & . & . & . & . & . & . & . & \ldots \\ . & . & . & . & . & . & . & . & \ldots\end{array}\right]$

- free coface - a generator with exactly one generator in boundary
- one space homology theory with compact supports for locally compact sets (Steenrod 1940, Massey 1978)


## Dual reductions?

$\left[\begin{array}{ccccccccc}\mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & \mathbf{1} & 0 & \mathbf{1} & 0 & \ldots \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & 0 & 0 & 1 & 0 & 0 & \ldots \\ 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\ 0 & \mathbf{1} & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \ldots \\ 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & 0 & \ldots \\ 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & 0 & \ldots \\ 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \mathbf{1} & \ldots \\ 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & 0 & \ldots \\ 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \ldots \\ 0 & 0 & 0 & 0 & \mathbf{1} & 0 & 0 & 0 & \ldots \\ . & . & . & . & . & . & . & . & \ldots \\ . & . & . & . & . & . & . & . & \ldots \\ . & . & . & . & . & . & . & . & \ldots\end{array}\right]$

- free coface - a generator with exactly one generator in boundary
- one space homology theory with compact supports for locally compact sets (Steenrod 1940, Massey 1978)
- combinatorial version (MM, B. Batko, 2006)


## Coreduction algorithm ${ }_{27}$

$Q:=$ empty queue;
enqueue $(Q, s)$;
while $Q \neq \emptyset$ do
$s$ :=dequeue $(Q)$;
if $\operatorname{bd}_{S} s=\{t\}$ then remove( $s$ ); remove $(t)$; enqueue $\left(Q, \operatorname{cbd}_{\mathcal{K}} t\right)$;
else if $\operatorname{bd}_{S} s=\emptyset$ then enqueue $\left(Q, \operatorname{cbd}_{\mathcal{K}} s\right)$;
endif;
endwhile ;

## Coreduction algorithm ${ }_{27}$

$Q:=$ empty queue;
enqueue $(Q, s)$;
while $Q \neq \emptyset$ do
$s$ :=dequeue $(Q)$;
if $\operatorname{bd}_{S} s=\{t\}$ then remove(s); remove $(t)$; enqueue $\left(Q, \operatorname{cbd}_{\mathcal{K}} t\right)$;
else if $\operatorname{bd}_{S} s=\emptyset$ then enqueue $\left(Q, \operatorname{cbd}_{\mathcal{K}} s\right)$;
endif;
endwhile ;


## Coreduction algorithm ${ }_{28}$



## Coreductions for S-complexes ${ }_{29}$

- $S$-complex - a free chain complex with a fixed basis $S$ which allows computation of incidence coefficients $\kappa(s, t)$ directly from the coding of the basis


## Coreductions for S-complexes ${ }_{29}$

- $S$-complex - a free chain complex with a fixed basis $S$ which allows computation of incidence coefficients $\kappa(s, t)$ directly from the coding of the basis
- Examples: cubical complexes, simplicial complexes


## Coreductions for S-complexes ${ }_{29}$

- $S$-complex - a free chain complex with a fixed basis $S$ which allows computation of incidence coefficients $\kappa(s, t)$ directly from the coding of the basis
- Examples: cubical complexes, simplicial complexes
- Rectangular CW-complexes (P. Dłotko, T. Kaczynski, MM, T. Wanner, 2010)


## Augmentible $S$-complexes ${ }_{30}$

Definition. An $S$-complex is augmentible iff there exists $\epsilon: S_{0} \rightarrow R$ (augmentation) such that

- $\epsilon(t) \neq 0$ for $t \in S_{0}$
- $\sum_{t} \kappa(s, t) \epsilon(t)=0$ for $s \in S_{1}$

Coreductions may be applied to any augmentible $S$-complexes.

## Coreduction algorithm ${ }_{31}$



Unlike torus, coreductions of Bing's House result in a non-augmentible $S$ complex.

## CAPD::RedHom 32

- http://redhom.ii.uj.edu.pl


## CAPD::RedHom 32

- http://redhom.ii.uj.edu.pl
- A subproject of CAPD (http://capd.ii.uj.edu.pl)


## CAPD::RedHom 32

- http://redhom.ii.uj.edu.pl
- A subproject of CAPD (http://capd.ii.uj.edu.pl)
- A sister project of CHomP (http://chomp.rutgers.edu)


## CAPD::RedHom 32

- http://redhom.ii.uj.edu.pl
- A subproject of CAPD (http://capd.ii.uj.edu.pl)
- A sister project of CHomP (http://chomp.rutgers.edu)

Generic homology software based on geometric reductions

## CAPD::RedHom 32

- http://redhom.ii.uj.edu.pl
- A subproject of CAPD (http://capd.ii.uj.edu.pl)
- A sister project of CHomP (http://chomp.rutgers.edu)

Generic homology software based on geometric reductions

- AS, CR, DMT algorithms


## CAPD::RedHom 32

- http://redhom.ii.uj.edu.pl
- A subproject of CAPD (http://capd.ii.uj.edu.pl)
- A sister project of CHomP (http://chomp.rutgers.edu)

Generic homology software based on geometric reductions

- AS, CR, DMT algorithms
- Betti and torsion numbers, homology generators, homology maps, persistence intervals


## CAPD::RedHom 32

- http://redhom.ii.uj.edu.pl
- A subproject of CAPD (http://capd.ii.uj.edu.pl)
- A sister project of CHomP (http://chomp.rutgers.edu)

Generic homology software based on geometric reductions

- AS, CR, DMT algorithms
- Betti and torsion numbers, homology generators, homology maps, persistence intervals
- $\mathbb{Z}$ and $\mathbb{Z}_{p}$ coefficients


## CAPD::RedHom 32

- http://redhom.ii.uj.edu.pl
- A subproject of CAPD (http://capd.ii.uj.edu.pl)
- A sister project of CHomP (http://chomp.rutgers.edu)

Generic homology software based on geometric reductions

- AS, CR, DMT algorithms
- Betti and torsion numbers, homology generators, homology maps, persistence intervals
- $\mathbb{Z}$ and $\mathbb{Z}_{p}$ coefficients
- generic but efficient: for cubical sets, simplicial sets, cubical CW complexes, ...


## CAPD::RedHom 32

- http://redhom.ii.uj.edu.pl
- A subproject of CAPD (http://capd.ii.uj.edu.pl)
- A sister project of CHomP (http://chomp.rutgers.edu)

Generic homology software based on geometric reductions

- AS, CR, DMT algorithms
- Betti and torsion numbers, homology generators, homology maps, persistence intervals
- $\mathbb{Z}$ and $\mathbb{Z}_{p}$ coefficients
- generic but efficient: for cubical sets, simplicial sets, cubical CW complexes, ...
- written in $\mathrm{C}++$, based on $\mathrm{C}++$ templates and generic programming
- Authors: P. Dłotko, M. Juda, A. Krajniak, MM, H. Wagner, ...

Rectangular CW-complexes ${ }_{33}$


## Rectangular CW-complexes ${ }_{34}$

Theorem. (P. Dłotko, T. Kaczynski, MM, T. Wanner, 2010) Consider a rectangular CW-complex given by a rectangular structure $\mathcal{Q}$. Let $P$ and $Q$ denote two arbitrary rectangles in $\mathcal{Q}$ with $\operatorname{dim} Q=1+\operatorname{dim} P$, and define the number $\alpha_{Q P}$ as follows. For $d=1$ and $Q=[a, b]$ let

$$
\alpha_{Q P}:=\left\{\begin{array}{cc}
-1 & \text { if } P=[a], \\
1 & \text { if } P=[b] \\
0 & \text { otherwise },
\end{array}\right.
$$

and for $d>1$ set
(1)

$$
\alpha_{Q P}:= \begin{cases}(-1)^{\sum_{i=1}^{j-1} \operatorname{dim} Q_{i}} \alpha_{Q_{j} P_{j}} & \text { if } P<Q \text { and } P_{j}<Q_{j} \\ 0 & \text { otherwise } .\end{cases}
$$

Then the numbers $\alpha_{Q P}$ are incidence numbers for the given rectangular CW-complex.

Rectangular CW complex versus cubical approach ${ }_{35}$


Numerical examples - manifolds ${ }_{36}$

|  | $T \times S^{1}$ | $\left(S^{1}\right)^{3}$ | $S^{1} \times K$ | $T \times T$ | $P \times K$ |
| :---: | ---: | ---: | ---: | ---: | ---: |
| dim | 5 | 6 | 6 | 6 | 8 |
| size in millions | 0.07 | 0.10 | 0.40 | 2.36 | 32.05 |
| $H_{0}$ | $\mathbb{Z}$ | $\mathbb{Z}$ | $\mathbb{Z}$ | $\mathbb{Z}$ | $\mathbb{Z}$ |
| $H_{1}$ | $\mathbb{Z}^{3}$ | 0 | $\mathbb{Z}^{2}+\mathbb{Z}_{2}$ | $\mathbb{Z}^{4}$ | $\mathbb{Z}+\mathbb{Z}_{2}^{2}$ |
| $H_{2}$ | $\mathbb{Z}^{3}$ | 0 | $\mathbb{Z}+\mathbb{Z}_{2}$ | $\mathbb{Z}^{6}$ | $\mathbb{Z}_{2}^{2}$ |
| $H_{3}$ | $\mathbb{Z}$ | $\mathbb{Z}$ |  | $\mathbb{Z}^{4}$ | $\mathbb{Z}_{2}$ |
| $H_{4}$ |  |  |  | $\mathbb{Z}$ |  |
| Linbox::Smith | 130 | 350 | $>600$ | $>600$ | - |
| CHomP:::homcubes | 1.3 | 1.7 | 10 | 56 | 17370 |
| RedHom::CR | 0.03 | 0.04 | 0.26 | 2.5 | 34 |
| RedHom::CR+DMT | 0.02 | 0.08 | 0.5 | 1.1 | - |

## Numerical examples - Cahn-Hillard ${ }_{37}$

|  | P0001 | P0050 | P0100 |
| :---: | ---: | ---: | ---: |
| dim | 3 | 3 | 3 |
| size in millions | 75.56 | 73.36 | 71.64 |
| $H_{0}$ | $\mathbb{Z}^{7}$ | $\mathbb{Z}^{2}$ | $\mathbb{Z}$ |
| $H_{1}$ | $\mathbb{Z}^{6554}$ | $\mathbb{Z}^{2962}$ | $\mathbb{Z}^{1057}$ |
| $H_{2}$ | $\mathbb{Z}^{2}$ |  |  |
| Linbox::Smith | $>600$ | $>600$ | $>600$ |
| CHomP::homcubes | 400 | 360 | 310 |
| RedHom::CR | 18 | 16 | 15 |
| RedHom::CR+DMT | 8 | 7 | 6 |
| RedHom::AS | 10 | 5 | 3.5 |

## Numerical examples - random sets ${ }_{38}$

|  | d4s8f50 | d4s12f50 | d4s16f50 | d4s20f50 |
| :---: | ---: | ---: | ---: | ---: |
| dim | 4 | 4 | 4 | 4 |
| size in millions | 0.07 | 0.34 | 1.04 | 2.48 |
| $H_{0}$ | $\mathbb{Z}^{2}$ | $\mathbb{Z}^{2}$ | $\mathbb{Z}^{2}$ | $\mathbb{Z}^{2}$ |
| $H_{1}$ | $\mathbb{Z}^{2}$ | $\mathbb{Z}^{17}$ | $\mathbb{Z}^{30}$ | $\mathbb{Z}^{51}$ |
| $H_{2}$ | $\mathbb{Z}^{174}$ | $\mathbb{Z}^{1389}$ | $\mathbb{Z}^{5510}$ | $\mathbb{Z}^{15401}$ |
| $H_{3}$ | $\mathbb{Z}^{2}$ | $\mathbb{Z}^{15}$ | $\mathbb{Z}^{71}$ | $\mathbb{Z}^{179}$ |
| Linbox::Smith | 120 | $>600$ | $>600$ | $>600$ |
| CHomP::homcubes | 1 | 8.3 | 41 | 170 |
| RedHom::CR | 0.08 | 1.4 | 15 | 140 |
| RedHom::CR+DMT | 0.03 | 0.16 | 0.58 | 2.9 |

Numerical examples - simplicial sets ${ }_{39}$

|  | random set | $S^{2}$ | $S^{5}$ |
| :---: | ---: | ---: | ---: |
| dim | 4 | 2 | 5 |
| size in millions | 4.8 | 1.9 | 4.3 |
| $H_{0}$ | $\mathbb{Z}$ | $\mathbb{Z}$ | $\mathbb{Z}$ |
| $H_{1}$ | $\mathbb{Z}^{39}$ | 0 | 0 |
| $H_{2}$ | $\mathbb{Z}^{84}$ | $\mathbb{Z}$ | 0 |
| $H_{3}$ |  |  | 0 |
| $H_{4}$ |  |  | $\mathbb{Z}$ |
| CHomP::homcubes | 830 | 310 | 2100 |
| RedHom::CR+DMT | 65 | 11 | 100 |

## Reduction equivalences 40

Theorem. Assume $S^{\prime}$ is an S-complex resulting from removing an coreduction pair $(a, b)$ in an $S$-omplex $S$. Then the chain maps $\psi^{(a, b)}: R(S) \rightarrow R\left(S^{\prime}\right)$ and $\iota^{(a, b)}: R\left(S^{\prime}\right) \rightarrow R(S)$ given by

$$
\psi_{k}^{(a, b)}(c):=\left\{\begin{array}{cl}
c-\frac{\langle c, a\rangle}{\langle\partial b, a\rangle} \partial b & \text { for } k=\operatorname{dim} b-1 \\
c-\langle c, b\rangle b & \text { for } k=\operatorname{dim} b \\
c & \text { otherwise }
\end{array}\right.
$$

and

$$
\iota_{k}^{(a, b)}(c):=\left\{\begin{array}{cl}
c-\frac{\langle\partial c, a\rangle}{\langle\partial b, a\rangle} b & \text { for } k=\operatorname{dim} b \\
c & \text { otherwise }
\end{array}\right.
$$

are mutually inverse chain equivalences.

## Reduction equivalences 40

Theorem. Assume $S^{\prime}$ is an S-complex resulting from removing an coreduction pair $(a, b)$ in an $S$-omplex $S$. Then the chain maps $\psi^{(a, b)}: R(S) \rightarrow R\left(S^{\prime}\right)$ and $\iota^{(a, b)}: R\left(S^{\prime}\right) \rightarrow R(S)$ given by

$$
\psi_{k}^{(a, b)}(c):=\left\{\begin{array}{cl}
c-\frac{\langle c, a\rangle}{\langle\partial b, a\rangle} \partial b & \text { for } k=\operatorname{dim} b-1 \\
c-\langle c, b\rangle b & \text { for } k=\operatorname{dim} b \\
c & \text { otherwise }
\end{array}\right.
$$

and

$$
\iota_{k}^{(a, b)}(c):=\left\{\begin{array}{cl}
c-\frac{\langle\partial c, a\rangle}{\langle\partial b, a\rangle} b & \text { for } k=\operatorname{dim} b \\
c & \text { otherwise }
\end{array}\right.
$$

are mutually inverse chain equivalences.

## Homology model ${ }_{41}$

- the reduced $S$-complex $S^{f}$ - the homology model of $S$ as a convenient model to solve the problems of decomposing homology classes on generators.


## Homology model ${ }_{41}$

- the reduced $S$-complex $S^{f}$ - the homology model of $S$ as a convenient model to solve the problems of decomposing homology classes on generators.
- $\pi^{f}: R(S) \rightarrow R\left(S^{f}\right)$ and $\iota^{f}: R\left(S^{f}\right) \rightarrow R(S)$ mutually inverse chain equivalences obtained by composing the maps $\pi^{(a, b)}$ and $\iota^{(a, b)}$.


## Homology model ${ }_{41}$

- the reduced $S$-complex $S^{f}$ - the homology model of $S$ as a convenient model to solve the problems of decomposing homology classes on generators.
- $\pi^{f}: R(S) \rightarrow R\left(S^{f}\right)$ and $\iota^{f}: R\left(S^{f}\right) \rightarrow R(S)$ mutually inverse chain equivalences obtained by composing the maps $\pi^{(a, b)}$ and $\iota^{(a, b)}$.
- used to transport homology classes between $H_{*}(S)$ and $H_{*}\left(S^{f}\right)$


## Homology model ${ }_{41}$

- the reduced $S$-complex $S^{f}$ - the homology model of $S$ as a convenient model to solve the problems of decomposing homology classes on generators.
- $\pi^{f}: R(S) \rightarrow R\left(S^{f}\right)$ and $\iota^{f}: R\left(S^{f}\right) \rightarrow R(S)$ mutually inverse chain equivalences obtained by composing the maps $\pi^{(a, b)}$ and $\iota^{(a, b)}$.
- used to transport homology classes between $H_{*}(S)$ and $H_{*}\left(S^{f}\right)$

The cost of transporting one generator through $\pi^{f}$ or $\iota^{f}$ in general may be quadratic.

## Homology model ${ }_{41}$

- the reduced $S$-complex $S^{f}$ - the homology model of $S$ as a convenient model to solve the problems of decomposing homology classes on generators.
- $\pi^{f}: R(S) \rightarrow R\left(S^{f}\right)$ and $\iota^{f}: R\left(S^{f}\right) \rightarrow R(S)$ mutually inverse chain equivalences obtained by composing the maps $\pi^{(a, b)}$ and $\iota^{(a, b)}$.
- used to transport homology classes between $H_{*}(S)$ and $H_{*}\left(S^{f}\right)$

The cost of transporting one generator through $\pi^{f}$ or $\iota^{f}$ in general may be quadratic.

In the case of Free Face Reduction Algorithm and Free Coface Reduction Algorithm it is linear!

Homology generators 42

- $S_{q}=\left\{s_{1}^{q}, s_{2}^{q}, \ldots s_{r_{q}}^{q}\right\}$.


## Homology generators 42

- $S_{q}=\left\{s_{1}^{q}, s_{2}^{q}, \ldots s_{r_{q}}^{q}\right\}$.
- $\left\{\left[u_{1}\right],\left[u_{2}\right], \ldots\left[u_{n}\right]\right\}$ - generators of the homology group $H_{q}(S)$.


## Homology generators 42

- $S_{q}=\left\{s_{1}^{q}, s_{2}^{q}, \ldots s_{r_{q}}^{q}\right\}$.
- $\left\{\left[u_{1}\right],\left[u_{2}\right], \ldots\left[u_{n}\right]\right\}$ - generators of the homology group $H_{q}(S)$.
- Task: decompose $[z] \in H_{q}(X)$ on homology generators

$$
[z]=\sum_{i=1}^{n} x_{i}\left[u_{i}\right]
$$

## Homology generators 42

- $S_{q}=\left\{s_{1}^{q}, s_{2}^{q}, \ldots s_{r_{q}}^{q}\right\}$.
- $\left\{\left[u_{1}\right],\left[u_{2}\right], \ldots\left[u_{n}\right]\right\}$ - generators of the homology group $H_{q}(S)$.
- Task: decompose $[z] \in H_{q}(X)$ on homology generators

$$
[z]=\sum_{i=1}^{n} x_{i}\left[u_{i}\right]
$$

- Linear algebra problem

$$
z=\sum_{i=1}^{n} x_{i} u_{i}+\partial c
$$

with unknown variables $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{Z}$ and $c \in R_{q+1}(S)$.

Homology generators ${ }_{4}$

$$
\begin{gathered}
z=\sum_{j=1}^{r_{q}} z_{j} s_{j}^{q}, \quad u_{i}=\sum_{j=1}^{r_{q}} u_{i j} s_{j}^{q}, \quad c=\sum_{k=1}^{r_{q+1}} y_{k} s_{k}^{q+1} \\
\partial s_{k}^{q+1}=\sum_{j=1}^{r_{q}} a_{k j} s_{j}^{q} \\
\partial c=\sum_{j=1}^{r_{q}}\left(\sum_{k=1}^{r_{q+1}} a_{k j} y_{k}\right) s_{j}^{q}
\end{gathered}
$$

## Homology generators ${ }_{43}$

$$
\begin{gathered}
z=\sum_{j=1}^{r_{q}} z_{j} s_{j}^{q}, \quad u_{i}=\sum_{j=1}^{r_{q}} u_{i j} s_{j}^{q}, \quad c=\sum_{k=1}^{r_{q+1}} y_{k} s_{k}^{q+1} \\
\partial s_{k}^{q+1}=\sum_{j=1}^{r_{q}} a_{k j} s_{j}^{q} \\
\partial c=\sum_{j=1}^{r_{q}}\left(\sum_{k=1}^{r_{q+1}} a_{k j} y_{k}\right) s_{j}^{q}
\end{gathered}
$$

Thus, we get a system of $r_{q}$ linear equations with $n+r_{q+1}$ unknowns

$$
z_{j}=\sum_{i=1}^{n} u_{i j} x_{i}+\sum_{k=1}^{r_{q+1}} a_{k j} y_{k} \text { for } j=1,2, \ldots r_{q} .
$$

- In case of large $S$ the cost is huge!
- Solution: transport the problem via $\pi^{f}$ to homology model and solve it there


## Homology of cubical maps 44

- $X, Y$ - cubical complexes


## Homology of cubical maps 44

- $X, Y$ - cubical complexes
- $g: X \rightarrow Y$ is cubical if maps elementary cubes to elementary cubes.
- $g$ induces chain map $g_{\#}: R(X) \rightarrow R(Y)$


## Homology of cubical maps 44

- $X, Y$ - cubical complexes
- $g: X \rightarrow Y$ is cubical if maps elementary cubes to elementary cubes.
- $g$ induces chain map $g_{\#}: R(X) \rightarrow R(Y)$
- examples of interest: inclusions and projections


## Homology of cubical maps 44

- $X, Y$ - cubical complexes
- $g: X \rightarrow Y$ is cubical if maps elementary cubes to elementary cubes.
- $g$ induces chain map $g_{\#}: R(X) \rightarrow R(Y)$
- examples of interest: inclusions and projections
- $U:=\left\{\left[u_{1}\right],\left[u_{2}\right], \ldots\left[u_{m}\right]\right\}$ and $W:=\left\{\left[w_{1}\right],\left[w_{2}\right], \ldots\left[w_{n}\right]\right\}$ - bases of $H_{q}(X)$ and $H_{q}(Y)$


## Homology of cubical maps 44

- $X, Y$ - cubical complexes
- $g: X \rightarrow Y$ is cubical if maps elementary cubes to elementary cubes.
- $g$ induces chain map $g_{\#}: R(X) \rightarrow R(Y)$
- examples of interest: inclusions and projections
- $U:=\left\{\left[u_{1}\right],\left[u_{2}\right], \ldots\left[u_{m}\right]\right\}$ and $W:=\left\{\left[w_{1}\right],\left[w_{2}\right], \ldots\left[w_{n}\right]\right\}$ - bases of $H_{q}(X)$ and $H_{q}(Y)$
- To find the matrix of $g_{*}$ ecompose $g_{\#}\left(u_{i}\right)$ on generators in $W$


## Homology of cubical maps 44

- $X, Y$ - cubical complexes
- $g: X \rightarrow Y$ is cubical if maps elementary cubes to elementary cubes.
- $g$ induces chain map $g_{\#}: R(X) \rightarrow R(Y)$
- examples of interest: inclusions and projections
- $U:=\left\{\left[u_{1}\right],\left[u_{2}\right], \ldots\left[u_{m}\right]\right\}$ and $W:=\left\{\left[w_{1}\right],\left[w_{2}\right], \ldots\left[w_{n}\right]\right\}$ - bases of $H_{q}(X)$ and $H_{q}(Y)$
- To find the matrix of $g_{*}$ ecompose $g_{\#}\left(u_{i}\right)$ on generators in $W$
- Using the diagram

we can solve the problem in the homology model $Y^{f}$, where it is much simpler.


## Computing Homology of Maps 45

In principle, computing homology of a map $f: X \rightarrow Y$ is a three step procedure:
(1) Find a finite representation of $f$
(2) Use it to build the chain map
(3) Compute the map in homology from the chain map

## Computing Homology of Maps 45

In principle, computing homology of a map $f: X \rightarrow Y$ is a three step procedure:
(1) Find a finite representation of $f$
(2) Use it to build the chain map
(3) Compute the map in homology from the chain map

## Combinatorial representations ${ }_{46}$

Let $X=|\mathcal{X}|$ be a full cubical set with representation $\mathcal{X}$ and let $f: X \rightarrow X$ be a continuous map. We say that $\mathcal{F}: \mathcal{X} \rightrightarrows \mathcal{X}$ is a representation of $f$ if

$$
f(Q) \subset \operatorname{int}|\mathcal{F}(Q)| .
$$

## Combinatorial representations ${ }_{46}$

Let $X=|\mathcal{X}|$ be a full cubical set with representation $\mathcal{X}$ and let $f: X \rightarrow X$ be a continuous map. We say that $\mathcal{F}: \mathcal{X} \rightrightarrows \mathcal{X}$ is a representation of $f$ if

$$
f(Q) \subset \operatorname{int}|\mathcal{F}(Q)|
$$

and for each $x \in X$ the set

$$
\lceil\mathcal{F}\rceil(x):=\bigcup\{|\mathcal{F}(Q)| \mid x \in Q \in \mathcal{X}\}
$$

is acyclic.

## Combinatorial representations ${ }_{46}$

Let $X=|\mathcal{X}|$ be a full cubical set with representation $\mathcal{X}$ and let $f: X \rightarrow X$ be a continuous map. We say that $\mathcal{F}: \mathcal{X} \rightrightarrows \mathcal{X}$ is a representation of $f$ if

$$
f(Q) \subset \operatorname{int}|\mathcal{F}(Q)| .
$$

and for each $x \in X$ the set

$$
\lceil\mathcal{F}\rceil(x):=\bigcup\{|\mathcal{F}(Q)| \mid x \in Q \in \mathcal{X}\}
$$

is acyclic.
A representation for a given $\mathcal{X}$ may not exist. However, under a sufficiently good subdivision, the represntation always exists.

## Combinatorial representations ${ }_{46}$

Let $X=|\mathcal{X}|$ be a full cubical set with representation $\mathcal{X}$ and let $f: X \rightarrow X$ be a continuous map. We say that $\mathcal{F}: \mathcal{X} \rightrightarrows \mathcal{X}$ is a representation of $f$ if

$$
f(Q) \subset \operatorname{int}|\mathcal{F}(Q)| .
$$

and for each $x \in X$ the set

$$
\lceil\mathcal{F}\rceil(x):=\bigcup\{|\mathcal{F}(Q)| \mid x \in Q \in \mathcal{X}\}
$$

is acyclic.
A representation for a given $\mathcal{X}$ may not exist. However, under a sufficiently good subdivision, the represntation always exists.

Theorem. (Allili, Kaczynski, 2000, Kaczynski, Mischaikow, MM 2004) If $\mathcal{F}$ is a representation of $f$, then there is an algorithm which transforms $\mathcal{F}$ into a chain map whose homology is the homology of $f$.

Graph approach (Granas and L. Górniewicz, 1981)


## The homology map algorithm (Mischaikow, MM, Pilarczyk 2005) 48 $^{8}$

(1) Construct a representation $\mathcal{F}$ of $f: X \rightarrow Y$.
(2) Construct the graph $G$ of $F:=\lceil\mathcal{F}\rceil$.
(3) If the homologies of the values of $F$ are not trivial, refine the grid and go to 1 .
(4) Apply shaving to $X, Y$ and $G$ in such a way that the shaved $G^{\prime}$ is the graph of an acyclic mv map $F^{\prime}: X^{\prime} \rightarrow Y^{\prime}$
(5) Find the homologies of the projections $p: G \rightarrow X$ and $q: G \rightarrow Y$.
(6) Return $H_{*}(q) H_{*}(p)^{-1}$

## The homology map algorithm (Mischaikow, MM, Pilarczyk 2005) 48

(1) Construct a representation $\mathcal{F}$ of $f: X \rightarrow Y$.
(2) Construct the graph $G$ of $F:=\lceil\mathcal{F}\rceil$.
(3) If the homologies of the values of $F$ are not trivial, refine the grid and go to 1 .
(4) Apply shaving to $X, Y$ and $G$ in such a way that the shaved $G^{\prime}$ is the graph of an acyclic mv map $F^{\prime}: X^{\prime} \rightarrow Y^{\prime}$
(5) Find the homologies of the projections $p: G \rightarrow X$ and $q: G \rightarrow Y$.
(6) Return $H_{*}(q) H_{*}(p)^{-1}$

- Pilarczyk (2005) - implementation
- satisfactorily fast for a class of practical problems
- remains computationally most expensive part in applications in dynamics
- preserving the acyclicity of values when applying reductions is computationally expensive


## Coreduction model approach, MM 201049

- Using coreductions construct homology models of $X, Y$, and $G$
- Using homology models find the homology of the projections $p: G \rightarrow X$ and $q: G \rightarrow Y$
- Compute the inverse of $p_{*}$ and return $q_{*} p_{*}^{-1}$
- No need to preserve the acyclicity under reductions
- significantly faster than the previous graph approach


## Graph approach versus coreduction model approach ${ }_{50}$

| Set | Emb | Size | CHomP |  |  |
| :---: | :---: | ---: | ---: | ---: | ---: |
|  | Dim | $\times 10^{6}$ | RedHom <br> homcubes | CR | speedup |
| 22torus8.map | 6 | 3.65 | 10.3 | 1.5 | 7 |
| z2torus12.map | 6 | 7.75 | 25.6 | 3.2 | 8 |
| z2torus16.map | 6 | 14.13 | 54.5 | 6.8 | 8 |
| z2torus19.map | 6 | 23.29 | 121.0 | 11.7 | 10 |

## Alternative based on Čech structures (outline) 51

- choose a Čech structure $\mathcal{X}$ on $X$
- for $Q \in \mathcal{X}$ take $\mathcal{F}(Q)$ as a convex enclosure of $f(Q)$ obtained via rigorous numerics
- $\mathcal{F}: K(\mathcal{X}) \rightarrow K(\mathcal{X} \cup \mathcal{F}(\mathcal{X}))$ acts as a simplicial map
- the homology of $f$ is computed when $K(\mathcal{X}) \subset K(\mathcal{X} \cup \mathcal{F}(\mathcal{X}))$ induces an isomorphism
- this is guaranteed when the enclosure is good enough


## Alternative based on Čech structures (outline) 51

- choose a Čech structure $\mathcal{X}$ on $X$
- for $Q \in \mathcal{X}$ take $\mathcal{F}(Q)$ as a convex enclosure of $f(Q)$ obtained via rigorous numerics
- $\mathcal{F}: K(\mathcal{X}) \rightarrow K(\mathcal{X} \cup \mathcal{F}(\mathcal{X}))$ acts as a simplicial map
- the homology of $f$ is computed when $K(\mathcal{X}) \subset K(\mathcal{X} \cup \mathcal{F}(\mathcal{X}))$ induces an isomorphism
- this is guaranteed when the enclosure is good enough


## Alternative based on Čech structures ${ }_{52}$

Example: consider

$$
f: \mathbb{C} \ni z \rightarrow z^{2} \in \mathbb{C}
$$

## Alternative based on Čech structures 52

Example: consider

$$
f: \mathbb{C} \ni z \rightarrow z^{2} \in \mathbb{C}
$$



## Cubical persistence via coreductions and inclusions ${ }_{53}$

- Assume field coefficients
- Compute the maps induced in homology by inclusions
- Find the compositions and ranks of the respective matrices

$$
\beta_{q}^{i, j}:=\operatorname{rank} \iota_{q}^{i, j},
$$

- Compute the number of $(i, j)$-persistence intervals from formula

$$
\mathrm{pi}_{q}(i, j)=\left(\beta_{q}^{i, j-1}-\beta_{q}^{i-1, j-1}\right)-\left(\beta_{q}^{i, j}-\beta_{q}^{i-1, j}\right) .
$$

## Direct coreduction approach to cubical persistence $5_{4}$

- levelwise coreductions


## Direct coreduction approach to cubical persistence ${ }_{54}$

- levelwise coreductions
- seperate queue for BFS on each level


## Direct coreduction approach to cubical persistence $5_{4}$

- levelwise coreductions
- seperate queue for BFS on each level
- selection always from the lowest level non-empty queue


## Direct coreduction approach to cubical persistence $5_{4}$

- levelwise coreductions
- seperate queue for BFS on each level
- selection always from the lowest level non-empty queue
- result: coreductions for all sublevel sets together in $O\left(n \log ^{*} n\right)$ time


## Direct coreduction approach to cubical persistence $5_{4}$

- levelwise coreductions
- seperate queue for BFS on each level
- selection always from the lowest level non-empty queue
- result: coreductions for all sublevel sets together in $O\left(n \log ^{*} n\right)$ time
- Complexity of finding persistence intervals on the plane is $O\left(n \log ^{*} n\right)$


## Timings ${ }_{55}$

| Grid | Levels | classical <br> approach $\left(^{*}\right)$ | RedHom <br> CR-incl. | RedHom <br> CR-direct |
| :---: | :---: | ---: | ---: | ---: |
| $1024 \times 1024$ | 17 | 3299.0 | 470.0 | 3.4 |
| $2048 \times 2048$ | 18 | 36187.0 | 8012.0 | 13.0 |
| $100 \times 100 \times 100$ | 25 | 60407.0 | 4025.0 | - |

$\left(^{*}\right)$ - implementation of Edelsbrunner-Letscher-Zomorodian algorithm for cubical sets by V. Nanda

## References ${ }_{56}$

- MM, P. Pilarczyk, N. Żelazna, Homology algorithm based on acyclic subspace, Computers and Mathematics with Applications (2008).
- MM, B. Batko, Coreduction homology algorithm, Discrete and Computational Geometry (2009).
- K. Mischaikow, MM, P. Pilarczyk, Graph Approach to the Computation of the Homology of Continuous Maps, Foundations of Computational Mathematics (2005).
- MM, Čech Type Approach to Computing Homology of Maps, Discrete and Computational Geometry (2010).
- P. Dłotko, T. Kaczynski, MM, T. Wanner, Coreduction Homology Algorithm for Regular CW-Complexes, Discrete and Computational Geometry (2011).
- MM, T. Wanner, Coreduction Homology Algorithm for Inclusions and Persistence, Computers and Mathematics with Applications (2010).
- S. Harker, K. Mischaikow, MM, V. Nanda, H. Wagner, M. Juda, P. Dłotko, The Efficiency of a Homology Algorithm based on Discrete Morse Theory and Coreductions, Proceedings CTIC 2010 (2010).
- A. Krajniak, MM, T. Wanner, Direct coreduction approach to persistence, in preparation.

