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Outline 2

•Dynamical systems
•Rigorous numerics of dynamical systems
•Homological invariants of dynamical systems
•Computing homological invariants
•Homology algorithms for subsets of Rd

•Homology algorithms for maps of subsets of Rd

•Applications
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Input: representation of a subset X ⊂ Rd

Output: Betti numbers, torsion coefficients, homology gener-
ators

Input: representation of a continuous map f : X → Y of
subsets of Rd

Output: matrix of map induced in homology
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Prototype homology algorithm 4

In principle, the homology algorithm may look as follows:

(1) Triangulate the space
(2) Construct the matrices of boundary maps
(3) Compute the kernel and the image
(4) Compute the quotient space
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Simplicial complex
• classical

Cubical set
• typical in imaging and rigorous

numerics
• very efficient and fast represen-

tation (bitmaps)

General polyhedrons
• most general
• obtaining the chain complex is

not straightforward
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• How many simplices do we need to triangulate a d-cube?
• Not more than d! but can we do better?



Cube triangulation 9

Theorem. Hughes, Anderson (1995), Bliss, Su (2005)

d 1 2 3 4 5 6 7
T v(d) 1 2 5 16 67 308 1493
T (d) 1 2 5 16 ? ? ?

Theorem. Smith (2000)

C(d) ≥ 6d/2d!

2(d + 1)(d+1)/2
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Input 10

Algebraists expect matrices of boundary maps as input of ho-
mology computations.

• On input: a set represented as a list of top dimensional
cells (cubes, simplices, ...)
• Generation of faces, incidence coefficients and boundary

maps, whenever necessary, must be considered a part of
the job!
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• An elementary interval is an interval [k, l] ⊂ R such that l = k (degen-
erate) or l = k + 1 (nondegenerate).
• An elementary cube Q in Rd is

I1 × I2 × · · · × Id ⊂ Rd.

• The dimension of Q is the number of nondegenerate Ii.
• K — the set of all elementary cubes in Rd

• Kk — the set of all elementary cubes in Rd of dimension k
• An elementary cube is full if its dimension is d.
• For A ⊂ K we use notation |A| :=

⋃
A.

• For A ⊂ Rd we use notation K(A) := {Q ∈ K | Q ⊂ A }.
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Cubical Chains 12

• Given an elementary cube Q we define the associated elementary chain
by

Q̂(P ) =

{
1 if P = Q

0 otherwise.

• A cubical chain is a finite linear combination of elementary chains of the
same dimension, called the dimension of the chain.
• All cubical chains of dimension q form an Abelian group, denoted Cq and

called the group of q-chains.
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• Given two elementary chains P̂ , Q̂, we define their cubical product by

P̂ � Q̂ := P̂ ×Q.
and we extend this definition linearly to arbitrary chains.



Cubical Product 14
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• Boundary operator is a homomorphism ∂ : Cq → Cq−1 given on genera-
tors by

∂Q̂ :=


0 if Q = [l],

[̂l + 1]− [̂l] if Q = [l, l + 1].

∂Î � P̂ + (−1)dim I Î � ∂P̂ if Q = I × P .
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• Boundary operator is a homomorphism ∂ : Cq → Cq−1 given on genera-
tors by

∂Q̂ :=


0 if Q = [l],

[̂l + 1]− [̂l] if Q = [l, l + 1].

∂Î � P̂ + (−1)dim I Î � ∂P̂ if Q = I × P .

Theorem.
∂ ◦ ∂ = 0
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• For an elementary chain c =
∑n

i=1 αiQ̂i we define its support by

|c| :=
⋃
{Qi | αi 6= 0 }

• Given a cubical set X we define the group of q-chains of X by

Cq(X) := { c ∈ Cq | |c| ⊂ X }.
• Is is easy to verify that we have the induced boundary operator

∂Xq : Cq(X)→ Cq−1(X).
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Cubical Homology 17

• The kernel of ∂Xq is called the group of q-cycles of X and denoted by
Zq(X).
• The image of ∂Xq+1 is called the group of q-boundaries of X and denoted

by Bq(X).
• One can verify that Bq(X) ⊂ Zq(X), which allows us to define the qth

homology group of X by

Hq(X) := Zq(X)/Bq(X)

• By homology of X we mean the collection of all homology groups
H(X) := {Hq(X)}.



Standard approach 18

Immediate algebraization:



Standard approach 19

Immediate algebraization:
• generate the faces



Standard approach 20

Dk =


1 −1 0 0 ...
1 0 1 0 ...
−1 1 0 0 ...

0 1 0 0 ...
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Dk =


1 −1 0 0 ...
1 0 1 0 ...
−1 1 0 0 ...

0 1 0 0 ...
. . . . .


Bk = Q−1DkR

Bk =


2 0 0 0 ...
0 1 0 0 ...
0 0 1 0 ...
0 0 0 0 ...
. . . . .



Immediate algebraization:
• generate the faces
• construct the boundary maps
• find Smith diagonalization and

read Betti numbers

Advantages:
• standard linear algebra
• may be easily adapted to ho-

mology generators

Problems:
• constructing faces immediately

may increase data size
• complexity: Cn3

• sparseness of matrices may not
help (fill-in process)
• C large for sparse matrices

(dynamic storage allocation)



Geometric reduction algorithms 22

Geometric Reductions
• Reduce the set so that

– the representation used is
preserved

– the homology is not
changed

• build chain complex
• compute homology
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• If X =
⋃
X is cubical and

Q ∈ X is an elementary cube
such that Q∩X is acyclic and
X ′ =

⋃
(X \ {Q}) then
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• full cubes representation is
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• acyclicity tests via lookup ta-

bles:
– 23

d−1 entries
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• If X =
⋃
X is cubical and

Q ∈ X is an elementary cube
such that Q∩X is acyclic and
X ′ =

⋃
(X \ {Q}) then

H(X) ∼= H(X ′)

• full cubes representation is
used!
• acyclicity tests via lookup ta-

bles:
– 23

d−1 entries
– extremely fast in dimension

2 and 3
– not enough memory for di-

mension above 3
• partial acyclicity tests in higher

dimensions
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foreach σ do
if cbd(σ) = {τ} then

remove(σ);
remove(τ );

endif;
endfor;

• free face - a generator with
exactly one generator in
coboundary
• a combinatorial counterpart of

deformation retraction

• on algebraic level:

1 1 0 1 1 0 1 0 ...
1 1 1 0 0 1 0 0 ...
0 1 0 0 0 0 0 0 ...
0 1 0 0 1 0 0 0 ...
0 0 1 0 0 1 0 0 ...
0 0 1 0 0 0 1 0 ...
0 0 0 1 0 0 0 1 ...
0 0 0 1 0 0 0 0 ...
0 0 0 0 1 0 0 0 ...
0 0 0 0 1 0 0 0 ...
. . . . . . . . ...
. . . . . . . . ...
. . . . . . . . ...
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Dual reductions? 26

1 1 0 1 1 0 1 0 ...
1 1 1 0 0 1 0 0 ...
0 1 0 0 0 0 0 0 ...
0 1 0 0 1 0 0 0 ...
0 0 1 0 0 0 0 0 ...
0 0 1 0 0 0 1 0 ...
0 0 0 1 0 0 0 1 ...
0 0 0 1 0 0 0 0 ...
0 0 0 0 1 0 0 0 ...
0 0 0 0 1 0 0 0 ...
. . . . . . . . ...
. . . . . . . . ...
. . . . . . . . ...


• free coface - a generator with exactly one generator in boundary
• one space homology theory with compact supports for locally compact

sets (Steenrod 1940, Massey 1978)
• combinatorial version (MM, B. Batko, 2006)
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Q := empty queue;
enqueue(Q,s);
while Q 6= ∅ do
s:=dequeue(Q);
if bdS s = {t} then

remove(s);
remove(t);
enqueue(Q, cbdK t);

else if bdS s = ∅ then
enqueue(Q, cbdK s);

endif;
endwhile ;
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Coreductions for S-complexes 29

• S-complex - a free chain complex with a fixed basis S which allows
computation of incidence coefficients κ(s, t) directly from the coding of
the basis
• Examples: cubical complexes, simplicial complexes
• Rectangular CW-complexes (P. D lotko, T. Kaczynski, MM, T. Wanner,

2010)



Augmentible S-complexes 30

Definition. An S-complex is augmentible iff there exists
ε : S0 → R (augmentation) such that

• ε(t) 6= 0 for t ∈ S0

•
∑

t κ(s, t)ε(t) = 0 for s ∈ S1

Coreductions may be applied to any augmentible S-complexes.



Coreduction algorithm 31

Unlike torus, coreductions of Bing’s House result in a non-augmentible S-
complex.
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CAPD::RedHom 32

• http://redhom.ii.uj.edu.pl
• A subproject of CAPD (http://capd.ii.uj.edu.pl)
• A sister project of CHomP (http://chomp.rutgers.edu)

Generic homology software based on geometric reductions

• AS, CR, DMT algorithms
• Betti and torsion numbers, homology generators, homology maps, per-

sistence intervals
• Z and Zp coefficients
• generic but efficient: for cubical sets, simplicial sets, cubical CW com-

plexes, ...
• written in C++, based on C++ templates and generic programming
• Authors: P. D lotko, M. Juda, A. Krajniak, MM, H. Wagner, ...
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Theorem. (P. D lotko, T. Kaczynski, MM, T. Wanner,
2010) Consider a rectangular CW-complex given by a rectangu-
lar structure Q. Let P and Q denote two arbitrary rectangles
in Q with dimQ = 1 + dimP , and define the number αQP as
follows. For d = 1 and Q = [a, b] let

αQP :=

 −1 if P = [a] ,
1 if P = [b] ,
0 otherwise ,

and for d > 1 set
(1)

αQP :=

 (−1)
∑j−1
i=1 dimQi αQjPj if P < Q and Pj < Qj ,

0 otherwise .

Then the numbers αQP are incidence numbers for the given

rectangular CW-complex.



Rectangular CW complex versus cubical approach 35



Numerical examples - manifolds 36

T × S1 (S1)3 S1 ×K T × T P ×K
dim 5 6 6 6 8

size in millions 0.07 0.10 0.40 2.36 32.05
H0 Z Z Z Z Z
H1 Z3 0 Z2 + Z2 Z4 Z + Z2

2

H2 Z3 0 Z + Z2 Z6 Z2
2

H3 Z Z Z4 Z2

H4 Z
Linbox::Smith 130 350 > 600 > 600 -

CHomP::homcubes 1.3 1.7 10 56 17370
RedHom::CR 0.03 0.04 0.26 2.5 34

RedHom::CR+DMT 0.02 0.08 0.5 1.1 -



Numerical examples - Cahn-Hillard 37

P0001 P0050 P0100
dim 3 3 3

size in millions 75.56 73.36 71.64
H0 Z7 Z2 Z
H1 Z6554 Z2962 Z1057

H2 Z2

Linbox::Smith > 600 > 600 > 600
CHomP::homcubes 400 360 310

RedHom::CR 18 16 15
RedHom::CR+DMT 8 7 6

RedHom::AS 10 5 3.5



Numerical examples - random sets 38

d4s8f50 d4s12f50 d4s16f50 d4s20f50
dim 4 4 4 4

size in millions 0.07 0.34 1.04 2.48
H0 Z2 Z2 Z2 Z2

H1 Z2 Z17 Z30 Z51

H2 Z174 Z1389 Z5510 Z15401

H3 Z2 Z15 Z71 Z179

Linbox::Smith 120 > 600 > 600 > 600
CHomP::homcubes 1 8.3 41 170

RedHom::CR 0.08 1.4 15 140
RedHom::CR+DMT 0.03 0.16 0.58 2.9



Numerical examples - simplicial sets 39

random set S2 S5

dim 4 2 5
size in millions 4.8 1.9 4.3

H0 Z Z Z
H1 Z39 0 0
H2 Z84 Z 0
H3 0
H4 Z

CHomP::homcubes 830 310 2100
RedHom::CR+DMT 65 11 100



Reduction equivalences 40

Theorem. Assume S ′ is an S-complex resulting from
removing an coreduction pair (a, b) in an S-omplex S. Then the
chain maps ψ(a,b) : R(S) → R(S ′) and ι(a,b) : R(S ′) → R(S)
given by

ψ
(a,b)
k (c) :=


c− 〈c,a〉

〈∂b,a〉∂b for k = dim b− 1 ,

c− 〈c, b〉b for k = dim b ,

c otherwise ,

and

ι
(a,b)
k (c) :=

{
c− 〈∂c,a〉〈∂b,a〉b for k = dim b ,

c otherwise ,

are mutually inverse chain equivalences.
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Homology model 41

• the reduced S-complex Sf — the homology model of S as a conve-
nient model to solve the problems of decomposing homology classes on
generators.
• πf : R(S) → R(Sf) and ιf : R(Sf) → R(S) mutually inverse chain

equivalences obtained by composing the maps π(a,b) and ι(a,b).
• used to transport homology classes between H∗(S) and H∗(S

f)

The cost of transporting one generator through πf or ιf in
general may be quadratic.

In the case of Free Face Reduction Algorithm and Free Coface
Reduction Algorithm it is linear!
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q
2, . . . s
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• { [u1], [u2], . . . [un] } – generators of the homology group Hq(S).
• Task: decompose [z] ∈ Hq(X) on homology generators

[z] =

n∑
i=1

xi[ui]

• Linear algebra problem

z =

n∑
i=1

xiui + ∂c

with unknown variables x1, x2, . . . , xn ∈ Z and c ∈ Rq+1(S).
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z =

rq∑
j=1

zjs
q
j, ui =

rq∑
j=1

uijs
q
j, c =

rq+1∑
k=1

yks
q+1
k

∂sq+1
k =

rq∑
j=1

akjs
q
j

∂c =

rq∑
j=1

(rq+1∑
k=1

akjyk

)
sqj

Thus, we get a system of rq linear equations with n + rq+1 unknowns

zj =

n∑
i=1

uijxi +

rq+1∑
k=1

akjyk for j = 1, 2, . . . rq.

• In case of large S the cost is huge!
• Solution: transport the problem via πf to homology

model and solve it there
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•X, Y – cubical complexes
• g : X → Y is cubical if maps elementary cubes to elementary cubes.
• g induces chain map g# : R(X)→ R(Y )
• examples of interest: inclusions and projections
• U := { [u1], [u2], . . . [um] } and W := { [w1], [w2], . . . [wn] } — bases of
Hq(X) and Hq(Y )
• To find the matrix of g∗ ecompose g#(ui) on generators in W
• Using the diagram

R(X) R(Y )

R(Y f)

-
g#

?

πf

6

ιf

we can solve the problem in the homology model Y f , where it is much
simpler.



Computing Homology of Maps 45

In principle, computing homology of a map f : X → Y is a three step
procedure:

(1) Find a finite representation of f
(2) Use it to build the chain map
(3) Compute the map in homology from the chain map



Computing Homology of Maps 45

In principle, computing homology of a map f : X → Y is a three step
procedure:

(1) Find a finite representation of f
(2) Use it to build the chain map
(3) Compute the map in homology from the chain map



Combinatorial representations 46

Let X = |X | be a full cubical set with representation X and let f : X → X
be a continuous map. We say that F : X −→→X is a representation of f if

f (Q) ⊂ int |F(Q)|.



Combinatorial representations 46

Let X = |X | be a full cubical set with representation X and let f : X → X
be a continuous map. We say that F : X −→→X is a representation of f if

f (Q) ⊂ int |F(Q)|.
and for each x ∈ X the set

dFe(x) :=
⋃
{|F(Q)| | x ∈ Q ∈ X}

is acyclic.



Combinatorial representations 46

Let X = |X | be a full cubical set with representation X and let f : X → X
be a continuous map. We say that F : X −→→X is a representation of f if

f (Q) ⊂ int |F(Q)|.
and for each x ∈ X the set

dFe(x) :=
⋃
{|F(Q)| | x ∈ Q ∈ X}

is acyclic.

A representation for a given X may not exist. However, under
a sufficiently good subdivision, the represntation always exists.



Combinatorial representations 46

Let X = |X | be a full cubical set with representation X and let f : X → X
be a continuous map. We say that F : X −→→X is a representation of f if

f (Q) ⊂ int |F(Q)|.
and for each x ∈ X the set

dFe(x) :=
⋃
{|F(Q)| | x ∈ Q ∈ X}

is acyclic.

A representation for a given X may not exist. However, under
a sufficiently good subdivision, the represntation always exists.

Theorem. (Allili, Kaczynski, 2000, Kaczynski, Mischaikow,
MM 2004) If F is a representation of f , then there is an algo-
rithm which transforms F into a chain map whose homology is
the homology of f .
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The homology map algorithm (Mischaikow, MM, Pilarczyk
2005) 48

(1) Construct a representation F of f : X → Y .
(2) Construct the graph G of F := dFe.
(3) If the homologies of the values of F are not trivial, refine the grid and

go to 1.
(4) Apply shaving to X , Y and G in such a way that the shaved G′ is the

graph of an acyclic mv map F ′ : X ′ → Y ′

(5) Find the homologies of the projections p : G→ X and q : G→ Y .
(6) Return H∗(q)H∗(p)

−1



The homology map algorithm (Mischaikow, MM, Pilarczyk
2005) 48

(1) Construct a representation F of f : X → Y .
(2) Construct the graph G of F := dFe.
(3) If the homologies of the values of F are not trivial, refine the grid and

go to 1.
(4) Apply shaving to X , Y and G in such a way that the shaved G′ is the

graph of an acyclic mv map F ′ : X ′ → Y ′

(5) Find the homologies of the projections p : G→ X and q : G→ Y .
(6) Return H∗(q)H∗(p)

−1

• Pilarczyk (2005) — implementation
• satisfactorily fast for a class of practical problems
• remains computationally most expensive part in applica-

tions in dynamics
• preserving the acyclicity of values when applying reductions

is computationally expensive



Coreduction model approach, MM 2010 49

• Using coreductions construct homology models of X , Y , and G
• Using homology models find the homology of the projections p : G→ X

and q : G→ Y
• Compute the inverse of p∗ and return q∗p

−1
∗

• No need to preserve the acyclicity under reductions
• significantly faster than the previous graph approach



Graph approach versus coreduction model approach 50

Set Emb Size CHomP RedHom speedup
Dim ×106 homcubes CR

z2torus8.map 6 3.65 10.3 1.5 7
z2torus12.map 6 7.75 25.6 3.2 8
z2torus16.map 6 14.13 54.5 6.8 8
z2torus19.map 6 23.29 121.0 11.7 10
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numerics
• F : K(X )→ K(X ∪ F(X )) acts as a simplicial map
• the homology of f is computed when K(X ) ⊂ K(X ∪ F(X )) induces
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Example: consider
f : C 3 z → z2 ∈ C



Alternative based on Čech structures 52
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Cubical persistence via coreductions and inclusions 53

• Assume field coefficients
• Compute the maps induced in homology by inclusions
• Find the compositions and ranks of the respective matrices

βi,jq := rank ιi,jq ,

• Compute the number of (i, j)-persistence intervals from formula

piq(i, j) =
(
βi,j−1q − βi−1,j−1q

)
−
(
βi,jq − βi−1,jq

)
.
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Direct coreduction approach to cubical persistence 54

• levelwise coreductions
• seperate queue for BFS on each level
• selection always from the lowest level non-empty queue
• result: coreductions for all sublevel sets together in O(n log∗ n) time
• Complexity of finding persistence intervals on the plane is O(n log∗ n)



Timings 55

Grid Levels classical RedHom RedHom

approach (*) CR-incl. CR-direct

1024× 1024 17 3299.0 470.0 3.4
2048× 2048 18 36187.0 8012.0 13.0

100× 100× 100 25 60407.0 4025.0 -

(*) - implementation of Edelsbrunner-Letscher-Zomorodian algorithm for cu-
bical sets by V. Nanda
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