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Main sources:

• Differential equations
• Iterates of maps
• Time series
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•X — a compact subset of Rd (in general: a topological space).
• T ∈ {R,R+,Z,Z+} — time (continuous if T ∈ {R,R+}, discrete if
T ∈ {Z,Z+})

A (semi)dynamical system is a continuous map

ϕ : X × T → X

such that for any x ∈ X and s, t ∈ T
ϕ(ϕ(x, t), s) = ϕ(x, s + t)

ϕ(x, 0) = x

• T = R — a flow
• T = Z+ — a discrete semidynamical system (dsds)
• ϕt : X 3 x→ ϕ(x, t) ∈ X — t-translation map
• f := ϕ1 — the generator (for discrete time only) identified with sds
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Henri Poincaré, 1854 - 1912
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• the trajectory (orbit) of x ∈ X
ϕ(x) := {ϕ(x, t) | t ∈ T }

• x ∈ X is stationary iff ϕ(x) = x
• x ∈ X is periodic iff there exists a t ∈ T+ such that ϕ(x, t) = x
• the invariant part of N ⊂ X :

Inv(N,ϕ) := {x ∈ N | ϕ(x) ⊂ N }
• A ⊂ X is invariant if Inv(A,ϕ) = A
• alpha and omega limit sets

α(x) := { y ∈ X | ∃tn → −∞ s.t. y = limϕ(x, tn) }
ω(x) := { y ∈ X | ∃tn → +∞ s.t. y = limϕ(x, tn) }

Limit sets are invariant.
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Some invariant sets and limit sets.
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• The main goal of the theory of dynamical systems is the
understanding of the asymptotic behaviour of the trajecto-
ries, i.e. the number and structure of limit sets as well as
their mutual relations
• Up to the half of the 20th century the dominating opinion

was that the a limit set may be a stationary point or the
trajectory of a periodic point.
• The computers significantly contributed to the realization

that the asymptotic behaviour may be much more compli-
cated (chaotic).
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in meteorology
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Edward Lorenz 1917-2008

• during the 1950s became skep-
tical of the appropriateness of
the mathematical models used
in meteorology
• in 1963 published the famous

paper: Deterministic Nonpe-
riodic Flow
• the Lorenz equations: ẋ = σ(y − x)

ẏ = Rx− y − xz
ż = xy − bz

D:/so_tex/prezentacje/2009/Galway-Computational-Homology/talk1/OdeViewer/Lorenz.exe


Main contributors to the discovery of deterministic chaos 13

• Henri Poincaré, 1890
•Mary Cartwright and John Littlewood, 1940’s
• Andrey Kolmogorov and Yakov Sinai, 1950’s
• Edward Lorenz, early 1960’s
• Oleksandr Sharkovsky, 1964
• Stephen Smale, 1967
• Tien-Yien Li and James A. Yorke 1975
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Rotation by 120 degrees
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Mapping to sequences of symbols
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• Consider
Σk := {0, 1, 2, . . . k − 1}Z

as a metric space with the metric

d(α, β) :=

∞∑
i=−∞

1− δα(i),β(i)

2|i|
,

where δmn stands for the Kronecker delta.
• A full shift on k symbols is the discrete dynamical system generated on

Σk by

σ : Σk 3 α→ σ(α) := (n→ α(n− 1)) ∈ Σk.

Features:

• Plenty of periodic points: Every finite sequence of symbols is in one-to-
one correspondence with a periodic point of σ
• Sensitive dependence on initial conditions: trajectories diverge exponen-

tially fast
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Smale horseshoe (1967) 25

Theorem. (Smale, 1967) Let N denote the square part
of the domain of the horseshoe map h. Then there exists a
homeomorphism ρ : Inv(N, h)→ Σ2 such that σρ = ρh.
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Problem 30

• Is horseshoe dynamics present in the Lorenz system?
• Or maybe it is only present in the numerical scheme?
• Or maybe the chaotic behaviour is only the consequence of

the rounding errors?
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Consider the equation

z′ = (αi− |z|)z, z ∈ C

The only periodic trajectory of this equation is the stationary point at the
origin.
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Ghost solutions 33

Consider the equation

z′ = (αi− |z|)z, z ∈ C

The only periodic trajectory of this equation is the stationary point at the
origin.
Consider its Euler discretization

Φh(z) := z(1 + h(αi− |z|))

For every h > 0 this discretization has invariant circles of radius

r± :=
1±
√

1− h2α2

h

D:/so_tex/prezentacje/2009/Galway-Computational-Homology/talk1/ghost.exe


Disappearing Smale’s horseshoe 34

• The logistic equation
y′ = y(1− y)

may be solved explicitly and it clearly does not exhibit chaotic behaviour
• However, Koçak and Hale (1991) prove that the two step numerical

scheme

Φh,λ

(
y1

y2

)
:=

(1−λ
1+λy2 + 2λ

1+λy1 + 2hy1(1− y2)

y1

)
contains an invariant subset conjugate to a horseshoe for every h > 0.
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• On 25th of February
1991 the Patriot mis-
sile system failed to in-
tercept an Iraqi Scud
and 28 American soldiers
were killed.

• Ariane 5’s first test flight on 4 June 1996
failed, with the rocket self-destructing 37 sec-
onds after launch because of a malfunction in
the control software, resulting in a loss of more
than $370 million.

In both cases the failures were attributed to numerical errors.
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sentable interval that contains
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• first proposed by M. Warmus in 1956
• rediscovered by R.E. Moore in 1959
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Discretization in space 48

• A combinatorial multivalued mapF : X −→→X is a combinatorial enclosure
of f : X → X if for every Q ∈ X

f (Q) ⊂ int |F(Q)|.
• In this case we say that f is a selector of F .



Numerical Analysis of Dynamical Systems 49



Numerical Analysis of Dynamical Systems 50



Numerical Analysis of Dynamical Systems 51



Numerical Analysis of Dynamical Systems 52



Numerical Analysis of Dynamical Systems 53



Numerical Analysis of Dynamical Systems 54



Numerical Analysis of Dynamical Systems 55



Chaos in Lorenz equations 56

Theorem. (1995) Consider the Lorenz equations ẋ = σ(y − x)
ẏ = Rx− y − xz
ż = xy − bz

and put
P := {(x, y, z) ∈ R3 | z = 53}.

For all parameter values in a sufficiently small neighborhood of
(σ,R, b) = (45, 54, 10), there exists a Poincaré section N ⊂ P
such that the Poincaré map g induced by (1) is Lipschitz and well
defined. Furthermore, there exists a d ∈ N and a continuous
surjection ρ : Inv(N, g)→ Σ2 such that

ρ ◦ gd = σ ◦ ρ
where σ : Σ2 → Σ2 is the full shift dynamics on two symbols.
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Rigorous numerics of dynamical systems 57

• Goal: use the outcome of numerical simulations to draw rigorous conclu-
sions about the behaviour of the original dynamical system.
• Needed:

(1) exact bounds for the errors resulting from the time discretization and
space discretization

(2) a method to draw conclusions about the original dynamical system
from the outcome of numerical simulations
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Advanced tool: topology of multivalued maps 60
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Multivalued maps 61

Let X, Y be topological spaces. A multivalued map F :
X −→→Y from X to Y is a function F : X → 2Y from X to
subsets of Y .

• The image of A ⊂ X is

F (A) :=
⋃
x∈A

F (x).

• The weak preimage of B ⊂ Y under F is

F−1(B) := {x ∈ X | F (x) ∩B 6= ∅}.

F is upper semicontinuous if F−1(B) is closed for any closed
set B ⊂ Y , and it is lower semicontinuous if the set F−1(U) is
open for any open set U ⊂ Y .
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• f : Rm−→◦ Rn — a rational function.
• [f ] : Im−→◦ In, the interval extension of f obtained by replacing the

arithmetic operations in f with their interval counterparts

Proposition. Assume f : Rm−→◦ Rn is a rational function.
Then for any x1, . . .xn ∈ dom [f ] we have

f (x1, . . .xn) ⊂ [f ](x1, . . .xn).
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• f : Rm−→◦ Rn

• g : Rm−→◦ Rn — a rational approximation of f such that for x ∈ D and
some w ∈ In

f (x)− g(x) ∈ w,

• then
f (x) ⊂ [g](x)[+]w.
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Tadeusz Ważewski, 1896-1972
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• a compact set N is an isolating neighborhood iff

x ∈ bdN ⇒ ϕ(x) 6⊂ N.

• A compact set N is an isolating block iff

N− := {x ∈ N | ∃ε > 0 : ϕ(x, t) 6∈ N for 0 < t < ε}

N is an isolating neighborhood iff Inv(N,ϕ) ⊂ intN .

A compact set S ⊂ X is called an isolated invariant set if there
exists an isolating neighborhood N such that S = Inv(N,ϕ).
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Theorem. (Conley and students, 1978)

• For every isolating neighborhood N of S there exists an
isolating block M such that S ⊂M ⊂ N .
• If M1 and M2 are two such blocks, then (M1/M

−
1 , [M

−
1 ])

and (M2/M
−
2 , [M

−
2 ]) are homotopy equivalent and, in par-

ticular,

H∗(M1,M
−
1 ) ∼= H∗(M2,M

−
2 ).

The cohomological Conley index of S and N is

Con∗(N,ϕ) := Con∗(S, ϕ) := H∗(M,M−).
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Charles Conley
1933-1984
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Theorem. (Conley and students, 1978)

•Ważewski property:

Con∗(N,ϕ) 6= 0 ⇒ Inv(N,ϕ) 6= ∅.
•Hopf property: If χ(Con∗(N,ϕ)) 6= 0 then there exists

an x ∈ N such that ϕ(x) = {x}.
•Additivity: If S = S1 ∪ S2 and S1 ∩ S2 6= ∅ then

Con∗(S, ϕ) = Con∗(S1, ϕ)⊕ Con∗(S2, ϕ).

•Homotopy invariance: If N is an isolating neighbor-
hood for a family of flows ϕt continuously depending on t
then

Con∗(N,ϕ0) = Con∗(N,ϕ1).
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Let f : X → X be the generator of ϕ, i.e. f (x) := ϕ(x, 1).

• A function σ : Z→ N is a solution to f through x in N ⊂ X if σ(0) = x
and f (σ(n)) = σ(n + 1) for all n ∈ Z.
• invariant part of N ⊂ X :

Inv(N, f ) := {x ∈ N | ∃σ : Z→ Na solution to f through x }
• A compact set S ⊂ X is called an isolated invariant set for f if there exists

a compact neighborhood N of S such that S = Inv(N,ϕ) ⊂ intN .
• Then, N is called an isolating neighborhood (for S).
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for f and an isolated invariant set S iff

(i) (positive relative invariance)
f (P2) ∩ P1 ⊂ P2

(ii) (exit set)
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(iii) (isolation)
S = Inv(cl(P1 \ P2), f ) ⊂ int(P1 \ P2)
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f (P2) ∩ P1 ⊂ P2
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(iii) (isolation)
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Proposition. If pair P = (P1, P2) of compact subsets of
an isolating neighborhood N satisfies

f (P2) ∩ P1 ⊂ P2

P1 \ f−1(N) ⊂ P2

InvN ⊂ int(P1\P2).

then P is an index pair for f and Inv(N, f ).

H∗(P1, P2) is not an invariant.
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• the generalized kernel of α ∈ V0(V, V ) is

gkerα :=
⋃
n∈N

kerαn

• the Leray functor L : Endo(V0)→ Auto(V0):

L(V, v) := (V/ gker v, v′)
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A quadruple P = (P1, P2, P̄1, P̄2) is an index quadruple for f
and S if (P1, P2) is an index pair for f and S and (P̄1, P̄2) is a
topological pair such that the map

fP : (P1, P2) 3 x→ f (x) ∈ (P̄1, P̄2)

ιP : (P1, P2) 3 x→ x ∈ (P̄1, P̄2)

are well defined and ιP is an excision (induces an isomorphism
in cohomology)
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A quadruple P = (P1, P2, P̄1, P̄2) is an index quadruple for f
and S if (P1, P2) is an index pair for f and S and (P̄1, P̄2) is a
topological pair such that the map

fP : (P1, P2) 3 x→ f (x) ∈ (P̄1, P̄2)

ιP : (P1, P2) 3 x→ x ∈ (P̄1, P̄2)

are well defined and ιP is an excision (induces an isomorphism
in cohomology)

Given an index quadruple, we define the index map as the
composition

IP := H∗(fPP̄ ) ◦H∗(ιP )−1
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Theorem. (MM,1990,2005) For every isolating neighbor-
hood N of f there exists an index quadruple P such that

Inv(N, f ) ⊂ P1 ⊂ P̄1 ⊂ N.

Moreover, if P and Q are two such quadruples, then

L(H∗(P1, P2), IP ) ∼= L(H∗(Q1, Q2), IQ).
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Theorem. (MM,1990,2005) For every isolating neighbor-
hood N of f there exists an index quadruple P such that

Inv(N, f ) ⊂ P1 ⊂ P̄1 ⊂ N.

Moreover, if P and Q are two such quadruples, then

L(H∗(P1, P2), IP ) ∼= L(H∗(Q1, Q2), IQ).

The Conley index of f in N is

(CH∗(N, f ), χ(N, f )) := L(H∗(P1, P2), IP ).



81

• J.W. Robbin, D. Salamon, 1988 - shape theory, inverse limit functor
•MM, 1990 - cohomology, Leray functor
• A. Szymczak, 1995 - homotopy, Szymczak functor (most general)
• J. Franks, D. Richeson, 2000 - a reformulation of Szymczak construction

in terms of shift equivalence
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Theorem.
•Ważewski property (J.W. Robbin, D. Salamon, 1988):

Con∗(N, f ) 6= 0 ⇒ Inv(N, f ) 6= ∅.
• Lefschetz property (MM, 1989): If Λ(χ(N, f )) 6= 0

then there exists an x ∈ N such that f (x) = x.
•Additivity:(J.W. Robbin, D. Salamon, 1988): If S =
S1 ∪ S2 and S1 ∩ S2 6= ∅ then

Con∗(S, f ) = Con∗(S1, f )⊕ Con∗(S2, f ).

•Homotopy invariance:(J.W. Robbin, D. Salamon,
1988): If N is an isolating neighborhood for a family of
flows ft continuously depending on t then

Con∗(N, f0) = Con∗(N, f1).
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Theorem. (MM, 1990) Let ϕ : X ×R→ X be a flow and
for t ∈ R let ϕt : X → X be the map defined by

ϕt(x) := ϕ(x, t).

If S ⊂ X is a compact set, then the following conditions are
equivalent.

(i) S is an isolated invariant set with respect to ϕ,
(ii) S is an isolated invariant set with respect to ϕt for all t 6= 0,

(iii) S is an isolated invariant set with respect to ϕt for some
t 6= 0.

Moreover, if one of the above conditions is satisfied, then for
any t 6= 0

χ(S, ϕt) = id,

Con∗(S, ϕt) ∼= Con∗(S, ϕ).



Conley index and horseshoe dynamics 86

Given a compact set N and α ∈ {0, 1}n put

Nα :=

n−1⋂
i=0

f i(Nαi)

and for ᾱ = (α1, α2, . . . αm) with αj ∈ {0, 1}n put

Nᾱ :=

m⋃
j=1

Nαj.
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Given a compact set N and α ∈ {0, 1}n put

Nα :=

n−1⋂
i=0

f i(Nαi)

and for ᾱ = (α1, α2, . . . αm) with αj ∈ {0, 1}n put

Nᾱ :=

m⋃
j=1

Nαj.

Proposition. If N is an isolating neighborhood for f then
so is Nα and Nᾱ
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Theorem. (K. Mischaikow, MM, 1993) Assume

N = N0 ∪N1

is an isolating neighbourhood for f such that N0 and N1 are
disjoint compact polyhedra. If for k = 0, 1

Conn(Nk) =

{
(Q, Id) if n = 1

0 otherwise

and χ∗(N00,01,11, f ), χ∗(N00,10,11, f ) are different from identity
then there exists a d ∈ N and a continuous surjection

ρ : Inv(N, f )→ Σ2

such that
ρ ◦ f d = σ ◦ ρ

where σ : Σ2 → Σ2 is the full shift dynamics on two symbols.
Moreover, for each periodic sequence α ∈ Σ2 there exists a
periodic point x ∈ N such that ρ(x) = α.
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•Dynamical systems
•Rigorous numerics of dynamical systems
•Homological invariants of dynamical systems
•Computing homological invariants
•Homology algorithms for subsets of Rd

•Homology algorithms for maps of subsets of Rd

•Applications
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• The set A ⊂ Rd is cubical if there exists a finite family A ⊂ K such that
A = |A|.
• The family A is referred to as the representation of A.
• The unique minimal representation, the minimal representation of A, is

denoted by Kmin(A).
• A cubical set is a full cubical set if its minimal representation consists

only of full elementary cubes.

Theorem. (Blass, Holsztyński, 1972) Every polyhedron is
homeomorphic to a cubical set.



A cubical set in R2
94



A full cubical set in R3
95
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• For A ⊂ Rd define

od(A) := {Q ∈ Kd | Q ∩ A 6= ∅ },
• For N ⊂ Kd define

intN := {Q ∈ N | od(Q) ⊂ N },
bdN := N \ int(N ).
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• X ⊂ Kd — a finite subfamily
• F : X −→→X — a multivalued combinatorial map
• The associated digraph has X as the set of vertices and an edge from P

to Q iff Q ∈ F(P ).
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• A combinatorial multivalued mapF : X −→→X is a combinatorial enclosure
of f : X → X if for every Q ∈ X

od(f (Q)) ⊂ F(Q).

• In this case we say that f is a selector of F .
• If F : X → X is a combinatorial enclosure of f : X → X , then for

every Q ∈ X
f (Q) ⊂ int |F(Q)|.
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Graph of a continuous map f 107



Estimates of values on the grid of cubes 108



Multivalued representation F 109
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• Let I be an interval in Z containing 0.
• A solution through Q ∈ K under F is a function Γ : I → K satisfying

the following two properties:
(1) Γ(0) = Q,
(2) Γ(n + 1) ∈ F(Γ(n)) for all n such that n, n + 1 ∈ I .
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• Let I be an interval in Z containing 0.
• A solution through Q ∈ K under F is a function Γ : I → K satisfying

the following two properties:
(1) Γ(0) = Q,
(2) Γ(n + 1) ∈ F(Γ(n)) for all n such that n, n + 1 ∈ I .
• In the language of the associated digraph a solution is just a path in the

digraph
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Assume N ⊂ K is finite. The invariant part of N under F is

Inv(N ,F) := {Q ∈ N | there exists a full solution Γ : Z→ N }.
The positively invariant part and the negatively invariant part of N under F
are defined respectively by

Inv+(N ,F) := {Q ∈ N | there exists a solution Γ : Z+ → N }
Inv−(N ,F) := {Q ∈ N | there exists a solution Γ : Z− → N }

We have the following obvious formula

Inv(N ,F) = Inv−(N ,F) ∩ Inv+(N ,F).
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Let FN : N −→→N denote the map given by

FN (Q) := F(Q) ∩N .

There exists an integer n such that

Inv+(N ,F) =

n⋂
i=0

F i
N (N )

Inv−(N ,F) =

n⋂
i=0

F−iN (N )
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A finite subset N of Kd is an isolating neighborhood for F if

Inv(N ,F) ⊂ intN .
We say that (P1,P2) is a combinatorial index pair for F in N if P2 ⊂ P1 ⊂
N and the following three conditions are satisfied.

• (positive relative invariance)
F(P i) ∩N ⊂ P i

• (exit set)
F(P1) ∩ bdN ⊂ P2

• (isolation)
Inv(N ,F) ⊂ P1 \ P2



Index Pairs from Combinatorial Index Pairs. 114

Theorem. (A. Szymczak 1997, MM 1996,2006)
Assume N is an isolating neighborhood for F and (P1,P2) is
a combinatorial index pair for F in N . Then for any selector
f of F the set |N | is an isolating neighborhood for f and
(|P1|, |P2|) is a index pair for f .



Construction of index quadruples 115

Theorem. (MM,2005)
Assume N is an isolating neighborhood for F . Let

P1 := Inv−(N ,F),

P2 := Inv−(N ,F) \ Inv+(N ,F).

Then (P1,P2) is a combinatorial index pair for F in N and

|P1| \ |P2| ⊂ int |N |.
Moreover, if

P̄1 := P1 ∪ F(P1),

P̄2 := P2 ∪ (F(P1) \ P1),

then for any selector f of F the quadruple
(|P1|, |P1|, |P̄1|, |P̄2|) is an index quadruple.



Positive invariant part algorithm 116

function positiveInvariantPart(set N, combinatorialMap F)
F := restrictedMap(F, N);
S := C := N;
repeat
S′ = S;
C := evaluate(F, C);
S := S ∩ C;

until (S = S′);
return S;
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function positiveInvariantPart(set N, combinatorialMap F)
F := restrictedMap(F, N);
S := C := N;
repeat
S′ = S;
C := evaluate(F, C);
S := S ∩ C;

until (S = S′);
return S;

Proposition. Assume the algorithm is called with a col-
lection of cubes N and a combinatorial multivalued map F on
input. Then it always stops and returns the positive invariant
part of F in N .



Combinatorial Index Pair Algorithm 117

function combinatorialIndexPair(set N, combinatorialMap F)
S+ := positiveInvariantPart(N, F);
Finv := evaluateInverse(F);
S− := positiveInvariantPart(N, Finv);
if S− ∩ S+ ⊂ int(N) then
P1 := S−;
P2 := S− \ S+;
P̄1 := P1 ∪ F(P1);
P̄2 := P2 ∪ F(P1) \ P1;
return (P1, P2, P̄1, P̄2);

else
return ”Failure”;

endif;
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function combinatorialIndexPair(set N, combinatorialMap F)
S+ := positiveInvariantPart(N, F);
Finv := evaluateInverse(F);
S− := positiveInvariantPart(N, Finv);
if S− ∩ S+ ⊂ int(N) then
P1 := S−;
P2 := S− \ S+;
P̄1 := P1 ∪ F(P1);
P̄2 := P2 ∪ F(P1) \ P1;
return (P1, P2, P̄1, P̄2);

else
return ”Failure”;

endif;

Theorem. Assume the algorithm is called with a collec-
tion of cubes N and a combinatorial enclosure of f on input.
If it does not fail, then it returns representations of an index
quadruple of f .
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