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Weather forecasts for Galway, Ireland from Weather
Underground:

Extended Forecast
Updated: 1:00 AM IST on June 20, 2009

Wednesday Night
Chance of Rain. Scattered Clouds. Low: 12 °C . Wind ESE 14 kmidh . Chance of

precipitation 50% (water equivalent of 1.76 mm).

Thursday
b adl Scattered Clouds. High: 20 °C . Wind East 18 kmih .

Thursday Night
Scattered Clouds. Low: 13 °C Wind East 14 kmith .

Friday
o Scattered Clouds. High: 21 °C . Wind East 14 kmih .

Friday Night
Clear. Low: 10 °C . Wind ESE 14 kmih . Windchill: 9 °C .




Weather forecasts for Galway, Ireland from Weather
Underground:

Extended Forecast
Updated: 1:00 AM IST on June 20, 2009

Wednesday Night
Chance of Rain. Scattered Clouds. Low: 12 °C . Wind ESE 14 kmidh . Chance of

precipitation 50% (water equivalent of 1.76 mm).

Thursday
b adl Scattered Clouds. High: 20 °C . Wind East 18 kmih .
ﬂ Thursday Night Extended Forecast
Scattered Clouds. Low: 13 °C . Wind East 14 kmih . Updﬂted ?["] PM |5T an .June 21’ 2["]9
Friday

o Scattered Clouds. High: 21 °C . Wind East 14 kmih . Wednesday Night
Fartly Cloudy. Low: 12 °C Wind SE 14 kmih .

Friday Night
Clear. Low: 10 °C . Wind ESE 14 kmih . Windchill: 9 Thursday

. 7| Chance of Rain. Scattered Clouds. High: 21 °C _Wind ESE 18 km/h . Chance of
9T | precipitation 20% {drace amounts).

Thursday Night
Chance of Rain. Scattered Clouds. Low: 11 °C WWind ESE 14 kmifh . Chance of

precipitation 20% (race amounts).

Friday
Clear. High: 21 °C wWind East 10 kmih .

Friday Might
Chance of Rain. Scattered Clouds. Low: 13 °C Wind SE 10 kmidh . Chance of

precipitation 40% fwater equivalent of 1.39 mm).
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e Part 11
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Dynamical systems



Dynamical systems:s

Main sources:

e Differential equations
e |terates of maps
e [ime series
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Dynamical systems-

e X — a compact subset of R (in general: a topological space).
o7 € {R,R",Z,Z"} — time (continuous if T € {R,R"}, discrete if
T el{Z,7"})

A (semi)dynamical system is a continuous map
po: X xXT =X

such that for any z € X and s,t € T
ple(z,t),s) = (s +1)
p(x,0) =z

o /'=R — a flow

o T'= 7" — a discrete semidynamical system (dsds)

e X Dux— p(x,t) € X — t-translation map

e f := 1 — the generator (for discrete time only) identified with sds



Jules Henri Poincarés

Henri Poincaré, 1854 - 1912
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Invariant sets,

e the trajectory (orbit) of x € X
pl) = {plz,t) [t €T}
e v € X is stationary iff p(z) ==
e v € X is periodic iff there exists a t € T such that p(x,t) ==

e the invariant part of N C X:
Inv(N,p):={xze N |plx) C N}
e A C X isinvariant if Inv(A,¢) = A
e alpha and omega limit sets
alx) = {ye X |3I, > —ocost. y=Ilimp(x,t,)
w(z) = {ye X |3, = +oost y=Ilimp(z,t,)

}
}

Limit sets are invariant.



Invariant sets and limit sets

Some invariant sets and limit sets.
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Edward Lorenz 1917-2008

Edward Lorenz .

e during the 1950s became skep-
tical of the appropriateness of
the mathematical models used
in meteorology
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Edward Lorenz .

e during the 1950s became skep-
tical of the appropriateness of
the mathematical models used
in meteorology

e in 1963 published the famous
paper: Deterministic Nonpe-
riodic Flow

e the Lorenz equations:

z=o(y—x)
y=Rr—y—uxz
z=uxy — bz

Edward Lorenz 1917-2008
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Main contributors to the discovery of deterministic chaos s

e Henri Poincaré, 1890

e Mary Cartwright and John Littlewood, 1940’s
e Andrey Kolmogorov and Yakov Sinai, 1950’s
e Edward Lorenz, early 1960's

e Oleksandr Sharkovsky, 1964

e Stephen Smale, 1967

e Tien-Yien Li and James A. Yorke 1975



Symbolic dynamics

Rotation by 120 degrees



Symbolic dynamics s

X —> ...123123123...

Mapping to sequences of symbols



Shift dynamics i
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Shift dynamics i

e Consider
Yy = 10,1,2,.. .k — 1}~

as a metric space with the metric
oo

1_5042',62'
d(a, B) = Z 2\2'(|) ()7

1=—00
where 0,,,, stands for the Kronecker delta.
e A full shift on k symbols is the discrete dynamical system generated on

Zk by
og:Ypda—o(a)=(Mn—an-—1)) €.
Features:
e Plenty of periodic points: Every finite sequence of symbols is in one-to-
one correspondence with a periodic point of o

e Sensitive dependence on initial conditions: trajectories diverge exponen-
tially fast
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Smale horseshoe (1967) 2

Theorem. (Smale, 1967) Let IV denote the square part
of the domain of the horseshoe map h. Then there exists a
homeomorphism p : Inv(N, h) — ¥, such that op = ph.
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the Lorenz equations »

7

incaré map in

Po
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References s

e E.N. Lorenz, Deterministic Nonperiodic Flow,

(1963).
e R.L. Adler, A.G. Konheim, M.H.McAndrew, Topological en-
tropy, (1965).
e S. Smale, Differentiable dynamical systems,

(1967).
e C. Sparrow, The Lorenz Equations: Bifurcations, Chaos and Strange
Attractors, (1982).
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Rigorous numerics of dynamical systems



Ghost solutionss:

Consider the equation
/

2 =(ai—|z|)z, 2z€C

The only periodic trajectory of this equation is the stationary point at the
origin.
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Ghost solutionss:

Consider the equation

/

2 =(ai—|z|)z, 2z€C

The only periodic trajectory of this equation is the stationary point at the
origin.
Consider its Euler discretization

Pp(z) == 2z(1 4+ h(ai — |2]))

For every h > 0 this discretization has invariant circles of radius

1+ V1= h2a?
; h

r+ .
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Disappearing Smale’s horseshoe .

e The logistic equation
v =yl —y)
may be solved explicitly and it clearly does not exhibit chaotic behaviour
e However, Kogcak and Hale (1991) prove that the two step numerical

scheme
1—\ 2\
——4 LA 2hy (1 —
U (yl) - <1+A92+ Tyt 2 y2>>

Y2 )1
contains an invariant subset conjugate to a horseshoe for every i > 0.
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Interval arithmetic s

eRCR— fixed, finite set of representable numbers
e representable intervals:

7 :={[a,b] | a,b e R, a < b

e Foro € {+,—,%,/} and I,J € 7T denote by I ¢ J the smallest repre-
sentable interval that contains

{acblaecl,be J}.

e first proposed by M. Warmus in 1956
e rediscovered by R.E. Moore in 1959



The simplest topological tool: Darboux property

y=f(x)

7




Discretization in timess




Discretization in time

__l_)ifferentiﬁiﬂ
equation




Numerical Analysis of Dynamical Systems 4«

Discretization in time

e . (Numerical method)
Differential
equation %




Numerical Analysis of Dynamical Systems x

<

leferentlal
equatlon

Discretization in time

(Numerical method)
»— €

1screte dynam
system




Discretization in space.:




Discretization in space

b




Discretization in space




Discretization in space




Discretization in space s




Discretization in space

=t

o
o

1/
/

=
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Discretization in space s

e A combinatorial multivalued map F : X = X is a combinatorial enclosure
of f: X — X ifforevery ) € X

F(Q) Cint [F(Q)].

e |n this case we say that f is a selector of F.
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Chaos in Lorenz equations s

Theorem. (1995) Consider the Lorenz equations
z=o0(y—z)
y=Rr —y—zxz
z=2xy — bz
and put
P :={(x,y,2) € R*| z = 53}.
For all parameter values in a sufficiently small neighborhood of
(0, R,b) = (45,54, 10), there exists a Poincaré section N C P

such that the Poincaré map g induced by (1) is Lipschitz and well
defined. Furthermore, there exists a d € N and a continuous

surjection p : Inv(NV, g) — > such that
pog'=cop
where o : Y9 — Y9 is the full shift dynamics on two symbols.
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Rigorous numerics of dynamical systemss:

e Goal: use the outcome of numerical simulations to draw rigorous conclu-
sions about the behaviour of the original dynamical system.
e Needed:
(1) exact bounds for the errors resulting from the time discretization and
space discretization
(2) a method to draw conclusions about the original dynamical system
from the outcome of numerical simulations
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e Foro € {+,—,%,/} and I,J € 7T denote by I ¢ J the smallest repre-
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e first proposed by M. Warmus in 1956
e rediscovered by R.E. Moore in 1959
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Multivalued mapse

Let X,Y be topological spaces. A multivalued map F' :

X =2Y from X to Y is a function F : X — 2Y from X to
subsets of Y.

e The imageof AC X is

F(A):= | ] F(x).

r€A

e The weak preimage of B C Y under F'is
FYB)={zrcX|F(x)NB#0}.

F is upper semicontinuous if F'~1(B) is closed for any closed
set B C Y, and it is lower semicontinuous if the set F'~1(U) is

open for any openset U C Y.
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Representations of rational functionss:

o f: R"—->R" — a rational function.
o [f| : I"—e>T", the interval extension of f obtained by replacing the
arithmetic operations in f with their interval counterparts

Proposition. Assume f : R™—e3R" is a rational function.
Then for any x3,...x, € dom [f] we have

f(x1,...%,) C[f](x1,...Xp).



Arbitrary functionse:

o f:R"—-o>R"
e g : R"—-e>R" — a rational approximation of f such that for v € D and
some w € 7"

e then



Referencess:

e M. Warmus, Calculus of approximations,

(1956).
e R.E. Moore, Interval analysis, (1966).
e J.K. Hale and H. Kocak, Dynamics and Bifurcations,
(1991).
e K. Mischaikow, MM, Chaos in Lorenz equations: a computer as-
sisted proof, (1995).
e K. Mischaikow, MM, Chaos in the Lorenz equations: a computer
assisted proof. Part II: details, (1998).

e A.M. Stuart, A.R. Humphries, Dynamical Systems and Numer-
ical Analysis, (1998).
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Homological invariants of dynamical systems



Wazewski Theorem ss

Tadeusz Wazewski, 1896-1972
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Isolated invariant sets e

® a compact set NV is an isolating neighborhood iff
rebdN = p(x)Z N.
e A compact set NV is an isolating block iff
N ={zeN| dJe>0 :¢(x,t) € N for0 <t <€}

N is an isolating neighborhood iff Inv(V, ¢) C int V.

A compact set S C X is called an isolated invariant set if there
exists an isolating neighborhood N such that S = Inv(N, ¢).
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Conley index

Theorem. (Conley and students, 1978)
e For every isolating neighborhood N of S there exists an
isolating block M such that S C M C N.
e If My and M, are two such blocks, then (M /M, [M;])
and (Msy/M, ,[M, |) are homotopy equivalent and, in par-
ticular,

H*(My, M) = H*(Ms, My).

The cohomological Conley index of S and NV is
Con*(N, ) := Con*(S, @) == H* (M, M™).



Charles Conley »

Charles Conley
1933-1984



An example







Main properties

Theorem. (Conley and students, 1978)
e Wazewski property:
Con*(N,p) #0 = Inv(N, p) # 0.

e Hopf property: If x(Con™(V,)) # 0 then there exists
an x € N such that p(z) = {x}.

e Additivity: If S = S; U S5 and S; NSy # () then

Con*(S, ¢) = Con™(S1, ) @ Con™(Ss, ).

e Homotopy invariance: If N is an isolating neighbor-

hood for a family of flows ¢; continuously depending on ¢

then
COH*(N, @0) — COH*<N, 901)
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Discrete case s

Let f: X — X be the generator of ¢, i.e. f(x) = ¢(z,1).
e A function o : Z — N is a solution to f through zin N C X if 0(0) = x
and f(o(n)) =c(n+1) for alln € Z.
e invariant part of N C X:

Inv(N, f):={x € N | do:Z — Na solution to f through x }

e A compactset S C X is called an isolated invariant set for f if there exists
a compact neighborhood N of S such that S = Inv(V, ) C int N.
e Then, N is called an isolating neighborhood (for 5).



Index pairs

A pair of compact sets P = (P, P,) is called an index pair
for f and an isolated invariant set S iff
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A pair of compact sets P = (P, P,) is called an index pair
for f and an isolated invariant set S iff

(i) (positive relative invariance)
f(PQ) NP CPs
(i) (exit set)
PN Cl(f<P1> \ Pl) C B
(iii) (isolation)
S = IHV(CI(Pl \ Pg), f) C il”lt(Pl \ Pg)



Index pairs«~

Proposition.  If pair P = (P, P») of compact subsets of
an isolating neighborhood NV satisfies

f(PQ) NP CP
P\ f(N) C P,
[nv N C int( P\ P,).
then P is an index pair for f and Inv(N, f).

H*(Py, P) is not an invariant.
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are well defined and ¢p is an excision (induces an isomorphism
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Index quadruples and index maps

A quadruple P = (P, P, P, P) is an index quadruple for f
and S if (P, P) is an index pair for f and S and (P, P,) is a
topological pair such that the map

fp: (P, P)>x— flz) e (P, P)
ip: (P, P) 2z —xe(P,DB)
are well defined and ¢p is an excision (induces an isomorphism
in cohomology)

Given an index quadruple, we define the index map as the
composition
Ip = H"(fpp)o H*(tp)™"



The Conley index for discrete dynamical systems s

Theorem. (MM,1990,2005) For every isolating neighbor-
hood N of f there exists an index quadruple P such that

Inv(N, f)C PLC P, C N.
Moreover, if P and () are two such quadruples, then
L(H*(P1, P5),Ip) = L(H*(Q1,Q2), Lg).



The Conley index for discrete dynamical systems s

Theorem. (MM,1990,2005) For every isolating neighbor-
hood N of f there exists an index quadruple P such that

Inv(N, f)C PLC P, C N.
Moreover, if P and () are two such quadruples, then
L(H*(P1, P5),Ip) = L(H*(Q1,Q2), Lg).

The Conley index of f in IV is
(CH*(N, f),x(N, f)) = L(H* (P, P,), Ip).
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e J.W. Robbin, D. Salamon, 1988 - shape theory, inverse limit functor

e MM, 1990 - cohomology, Leray functor

e A. Szymczak, 1995 - homotopy, Szymczak functor (most general)

e J. Franks, D. Richeson, 2000 - a reformulation of Szymczak construction
in terms of shift equivalence
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Main propertiesa

Theorem.
e Wazewski property (J.W. Robbin, D. Salamon, 1988):

Con*(N, f) #0 = Inv(N, f) # 0.

e Lefschetz property (MM, 1989): If A(x(NV, f)) # 0
then there exists an x € N such that f(x) = x.

e Additivity:(J.W. Robbin, D. Salamon, 1988): If S =
S1 U Sy and S1 NS, 7é () then

Con*(S, f) = Con*(S1, f) ® Con™(Ssy, f).

e Homotopy invariance:(J.W. Robbin, D. Salamon,
1988): If N is an isolating neighborhood for a family of
flows f; continuously depending on ¢ then

Con*(N, fy) = Con™(N, f1).



Discrete vs. continuous case. ss

Theorem. (MM, 1990) Let ¢ : X xR — X be a flow and
fort € R let ¢; : X — X be the map defined by

pi() = (1),

If S C X is a compact set, then the following conditions are
equivalent.

(i) S is an isolated invariant set with respect to ¢,

(i) S is an isolated invariant set with respect to (; for all £ # 0,
(iii) S is an isolated invariant set with respect to ; for some

t # 0.
Moreover, if one of the above conditions is satisfied, then for
any t #£ 0
X(S; ¢r) = id,
Con*(S, ¢:) = Con™(S, v).
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Given a compact set N and a € {0, 1}" put
n—1
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Conley index and horseshoe dynamics s

Given a compact set N and a € {0, 1}" put
n—1
Ny = m fZ<NOé¢)
i=0
and for a = (al,a?, ... a™) with o/ € {0,1}" put

N@ = LmJ N&j.
j=1

Proposition. |f NV is an isolating neighborhood for f then
so is IV, and NN,



Conley index and horseshoe dynamics s

Theorem. (K. Mischaikow, MM, 1993) Assume
N = NyU N
is an isolating neighbourhood for f such that N, and N; are
disjoint compact polyhedra. If for £ = 0,1
" 1 (Q,1d) ifn=1
Cont({g) = { 0  otherwise

and X*(NOO,OI,H; f), X*<NOO,1O,117 f) are different from identity
then there exists a d € N and a continuous surjection

p:Inv(N, f) — 3
such that

pofl=cop

where o : Y9 — X5 is the full shift dynamics on two symbols.
Moreover, for each periodic sequence @ € >y there exists a
periodic point z € N such that p(z) = «.
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Computing homological invariants
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Cubical sets:

e The set A C R%is cubical if there exists a finite family A C K such that
A=A

e The family A is referred to as the representation of A.

e The unique minimal representation, the minimal representation of A, is
denoted by Kin(A).

e A cubical set is a full cubical set if its minimal representation consists
only of full elementary cubes.

Theorem.  (Blass, Holsztyriski, 1972) Every polyhedron is
homeomorphic to a cubical set.



A cubical set in R%.




A full cubical set in R° o
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Combinatorial boundary and interior s

e For A C R define
04(A) ={Q e | QNAZD},
e For N C K, define
nt N ={Q eN |04(Q) C N},
bd N =N\ int(N).
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Multivalued combinatorial maps i

o X C K% — a finite subfamily
o F : X =X — a multivalued combinatorial map
e The associated digraph has X" as the set of vertices and an edge from P

to Q iff Q € F(P).



Combinatorial boundary and interior .
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Combinatorial enclosures i

e A combinatorial multivalued map F : X = X is a combinatorial enclosure
of f: X — X ifforevery Q € X
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Combinatorial enclosures i

e A combinatorial multivalued map F : X = X is a combinatorial enclosure
of f: X — X ifforevery Q € X

0d(f(Q)) C F(Q).
e In this case we say that f is a selector of F.

olf F : X — X is a combinatorial enclosure of f : X — X, then for
every () € X

F(Q) Cint[F(Q)].



Combinatorial enclosures 1o
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Graph of a continuous map [ 1w
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Estimates of values on the grid of cubes s
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Multivalued representation F i

L

RIY £ X>Y /

N P e BN /

; " / \\\i//

A->PQ D>pP X
F: B->Q E->P
C->PQ F->PQR



Combinatorial solutions i

e Let [ be an interval in Z containing 0.

e A solution through () € K under F is a function I' : I — I satisfying
the following two properties:
(1) I'(0) = @,
(2)T(n+1) € F(I'(n)) for all n such that n,n+1 € I.



Combinatorial solutions i

e Let [ be an interval in Z containing 0.

e A solution through () € K under F is a function I' : I — I satisfying
the following two properties:
(1) I'(0) = @,
(2)T(n+1) € F(I'(n)) for all n such that n,n+1 € I.

e In the language of the associated digraph a solution is just a path in the
digraph
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Combinatorial invariant parts

Assume N C K is finite. The invariant part of N under F is

Inv(N, F) :={Q € N | there exists a full solution I' : Z — N }.

The positively invariant part and the negatively invariant part of A under F
are defined respectively by

Inv (N, F) = {Q € N | there exists a solution I' : Z7 — N}
Inv™ (N, F) = {Q € N | there exists a solution I' : Z= — N }
We have the following obvious formula

Inv(N, F) =Inv- (N, F) N Inv (N, F).



Algorithmizable formulae for invariant parts i

Let Fpr : N =N denote the map given by
Fn(Q) =F(Q)NN.



Algorithmizable formulae for invariant parts i

Let Fpr : N =N denote the map given by
Fn(Q) =F(Q)NN.

There exists an integer n such that

Invt (N, F) = ﬂfﬁ\/(/\/‘)

Inv™ (N, F) = ﬂ]——ﬁ(./\f)
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Combinatorial Index Pairs. i3

A finite subset N of K, is an isolating neighborhood for F if
Inv(N, F) C int V.

We say that (Pq,Ps) is a combinatorial index pair for F in N if Py C Py C
N and the following three conditions are satisfied.

e (positive relative invariance)

JT<P2> NN C Pi
o (exit set)
F(P1)NbdN C Ps
e (isolation)

IHV(N, .7:) C P1 \ Py



Index Pairs from Combinatorial Index Pairs. 1.

Theorem. (A. Szymczak 1997, MM 1996,2006)

Assume N is an isolating neighborhood for F and (P, P>) is
a combinatorial index pair for F in A/. Then for any selector
f of F the set |N| is an isolating neighborhood for f and
(|P1], |P2l|) is a index pair for f.



Construction of index quadruples s

Theorem. (MM,2005)
Assume N is an isolating neighborhood for F. Let

P = Inv (N, F),
Py = Inv- (N, F) \ Inv" (N, F).
Then (P, Ps) is a combinatorial index pair for F in N and
P1| \ |P2| C int |N].
Moreover, if

751 = Py UF<P1>,

Py = P2U(F(P)\ P,
then for any selector f of F the quadruple
(|P1|,|P1|, |P1|, |P2|) is an index quadruple.



Positive invariant part algorithm i

function positiveInvariantPart(set N, combinatorialMap F)
F := restrictedMap(F,N);
S =C:=N;
repeat
S’ =8:
C := evaluate(F,C);
S :=SNC;
until (S =25');
return S;



Positive invariant part algorithm i

function positiveInvariantPart(set N, combinatorialMap F)
F := restrictedMap(F,N);
S =C:=N;
repeat
S’ =8:
C := evaluate(F,C);
S :=SNC;
until (S =25');
return S;

Proposition. Assume the algorithm is called with a col-
lection of cubes A and a combinatorial multivalued map F on
input. Then it always stops and returns the positive invariant

part of 7 in V.



Combinatorial Index Pair Algorithm -

function combinatorialIndexPair(set N, combinatorialMap F)
ST := positiveInvariantPart(N,F);
Finv = evaluateInverse(F);

S™ := positiveInvariantPart(N,Finv);
if ST N ST C int(N) then

P, .= S_;

Py =5~ \ S+;

151 = P1 U F(Pl

);
Py := Py UF(Py) \ Py;
return (P, Py, Py, Py);
else
return ” Failure”;

endif;



Combinatorial Index Pair Algorithm -

function combinatorialIndexPair(set N, combinatorialMap F)
ST := positiveInvariantPart(N,F);
Finv .= evaluateInverse(F);

S™ := positiveInvariantPart(N,Finv);
if ST N ST C int(N) then

P, .= S_;

Py =5~ \ S+;

151 = P1 U F(Pl

);
Py =Py UF(Py) \ P;
return (P, Py, P{, Py);
else
return ” Failure”;

endif;

Theorem. Assume the algorithm is called with a collec-

tion of cubes N and a combinatorial enclosure of f on input.
If it does not fail, then it returns representations of an index
quadruple of f.
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