Computational Homology in Topological Dynamics

ACAT School, Bologna, Italy May 26, 2012

Marian Mrozek
Jagiellonian University, Kraków

Weather forecasts for Galway, Ireland from Weather Underground ${ }_{2}$

Extended Forecast

Updated: 1:00 AM IST on June 20, 2009

Wednesday Night

Chance of Rain. Scattered Clouds. Low: $12^{\circ} \mathrm{C}$. Wind ESE $14 \mathrm{~km} / \mathrm{h}$. Chance of
precipitation 50% (water equivalent of 1.76 mm).
Thursday
Scattered Clouds. High: $20^{\circ} \mathrm{C}$. Wind East $18 \mathrm{~km} / \mathrm{h}$.
Thursday Night
Scattered Clouds. Low: $13^{\circ} \mathrm{C}$. Wind East $14 \mathrm{~km} / \mathrm{h}$.
Friday
Scattered Clouds. High: $21^{\circ} \mathrm{C}$. Wind East $14 \mathrm{~km} / \mathrm{h}$.

Friday Night

Clear. Low. $10^{\circ} \mathrm{C}$. Wind ESE $14 \mathrm{~km} / \mathrm{h}$. Windchill: $9^{\circ} \mathrm{C}$

Weather forecasts for Galway, Ireland from Weather Underground ${ }_{2}$

Extended Forecast

Updated: 1:00 AM IST on June 20, 2009

Wednesday Night
Chance of Rain. Scattered Clouds. Low: $12^{\circ} \mathrm{C}$. Wind ESE $14 \mathrm{~km} / \mathrm{h}$. Chance of
precipitation 50% (water equivalent of 1.76 mm).

Thursday

Scattered Clouds. High: $20^{\circ} \mathrm{C}$. Wind East $18 \mathrm{~km} / \mathrm{h}$

Thursday Night
Scattered Clouds. Low: $13^{\circ} \mathrm{C}$. Wind East $14 \mathrm{~km} / \mathrm{h}$.

Extended Forecast

Updated: 7:00 PM IST on June 21, 2009


```
Friday
Scattered Clouds. High: \(21^{\circ} \mathrm{C}\). Wind East \(14 \mathrm{~km} / \mathrm{h}\)
```


Friday Night

Clear. Low: $10^{\circ} \mathrm{C}$. Wind ESE $14 \mathrm{~km} / \mathrm{h}$. Windchill: 9^{\prime}

Wednesday Night
Partly Cloudy. Low: $12^{\circ} \mathrm{C}$. Wind SE $14 \mathrm{~km} / \mathrm{h}$

Thursday

Chance of Rain. Scattered Clouds. High: $21^{\circ} \mathrm{C}$. Wind ESE $18 \mathrm{~km} / \mathrm{h}$. Chance of precipitation 20% (trace amounts).

Thursday Night

Chance of Rain. Scattered Clouds. Low: $11^{\circ} \mathrm{C}$. Wind ESE $14 \mathrm{~km} / \mathrm{h}$. Chance of precipitation 20% (trace amounts).

Friday
Clear. High: $21^{\circ} \mathrm{C}$. Wind East $10 \mathrm{~km} / \mathrm{h}$.
Friday Night
Chance of Rain. Scattered Clouds. Low: $13^{\circ} \mathrm{C}$. Wind SE $10 \mathrm{~km} / \mathrm{h}$. Chance of precipitation 40% (water equivalent of 1.39 mm).

Outline $_{3}$

- Part I
- Dynamical systems
- Rigorous numerics of dynamical systems
- Homological invariants of dynamical systems
- Computing homological invariants
- Part II
- Homology algorithms for subsets of \mathbb{R}^{d}
- Homology algorithms for maps of subsets of \mathbb{R}^{d}
- Applications

Outline $_{4}$

- Dynamical systems
- Rigorous numerics of dynamical systems
- Homological invariants of dynamical systems
- Computing homological invariants
- Homology algorithms for subsets of \mathbb{R}^{d}
- Homology algorithms for maps of subsets of \mathbb{R}^{d}
- Applications

Dynamical systems ${ }_{5}$

Main sources:

- Differential equations
- Iterates of maps
- Time series

Dynamical systems ${ }_{6}$

Dynamical systems,

- X - a compact subset of \mathbb{R}^{d} (in general: a topological space).

Dynamical systems,

- X - a compact subset of \mathbb{R}^{d} (in general: a topological space).
- $T \in\left\{\mathbb{R}, \mathbb{R}^{+}, \mathbb{Z}, \mathbb{Z}^{+}\right\}$- time (continuous if $T \in\left\{\mathbb{R}, \mathbb{R}^{+}\right\}$, discrete if $\left.T \in\left\{\mathbb{Z}, \mathbb{Z}^{+}\right\}\right)$

Dynamical systems ${ }_{7}$

- X - a compact subset of \mathbb{R}^{d} (in general: a topological space).
- $T \in\left\{\mathbb{R}, \mathbb{R}^{+}, \mathbb{Z}, \mathbb{Z}^{+}\right\}$- time (continuous if $T \in\left\{\mathbb{R}, \mathbb{R}^{+}\right\}$, discrete if $\left.T \in\left\{\mathbb{Z}, \mathbb{Z}^{+}\right\}\right)$

A (semi)dynamical system is a continuous map

$$
\varphi: X \times T \rightarrow X
$$

such that for any $x \in X$ and $s, t \in T$

$$
\begin{gathered}
\varphi(\varphi(x, t), s)=\varphi(x, s+t) \\
\varphi(x, 0)=x
\end{gathered}
$$

Dynamical systems ${ }_{7}$

- X - a compact subset of \mathbb{R}^{d} (in general: a topological space).
- $T \in\left\{\mathbb{R}, \mathbb{R}^{+}, \mathbb{Z}, \mathbb{Z}^{+}\right\}$- time (continuous if $T \in\left\{\mathbb{R}, \mathbb{R}^{+}\right\}$, discrete if $\left.T \in\left\{\mathbb{Z}, \mathbb{Z}^{+}\right\}\right)$

A (semi)dynamical system is a continuous map

$$
\varphi: X \times T \rightarrow X
$$

such that for any $x \in X$ and $s, t \in T$

$$
\begin{gathered}
\varphi(\varphi(x, t), s)=\varphi(x, s+t) \\
\varphi(x, 0)=x
\end{gathered}
$$

- $T=\mathbb{R}$ - a flow

Dynamical systems,

- X - a compact subset of \mathbb{R}^{d} (in general: a topological space).
- $T \in\left\{\mathbb{R}, \mathbb{R}^{+}, \mathbb{Z}, \mathbb{Z}^{+}\right\}$- time (continuous if $T \in\left\{\mathbb{R}, \mathbb{R}^{+}\right\}$, discrete if $\left.T \in\left\{\mathbb{Z}, \mathbb{Z}^{+}\right\}\right)$

A (semi)dynamical system is a continuous map

$$
\varphi: X \times T \rightarrow X
$$

such that for any $x \in X$ and $s, t \in T$

$$
\begin{gathered}
\varphi(\varphi(x, t), s)=\varphi(x, s+t) \\
\varphi(x, 0)=x
\end{gathered}
$$

- $T=\mathbb{R}$ - a flow
- $T=\mathbb{Z}^{+}$- a discrete semidynamical system (dsds)

Dynamical systems,

- X - a compact subset of \mathbb{R}^{d} (in general: a topological space).
- $T \in\left\{\mathbb{R}, \mathbb{R}^{+}, \mathbb{Z}, \mathbb{Z}^{+}\right\}$- time (continuous if $T \in\left\{\mathbb{R}, \mathbb{R}^{+}\right\}$, discrete if $\left.T \in\left\{\mathbb{Z}, \mathbb{Z}^{+}\right\}\right)$

A (semi)dynamical system is a continuous map

$$
\varphi: X \times T \rightarrow X
$$

such that for any $x \in X$ and $s, t \in T$

$$
\begin{gathered}
\varphi(\varphi(x, t), s)=\varphi(x, s+t) \\
\varphi(x, 0)=x
\end{gathered}
$$

- $T=\mathbb{R}$ - a flow
- $T=\mathbb{Z}^{+}$- a discrete semidynamical system (dsds)
- $\varphi_{t}: X \ni x \rightarrow \varphi(x, t) \in X$ - t-translation map

Dynamical systems,

- X - a compact subset of \mathbb{R}^{d} (in general: a topological space).
- $T \in\left\{\mathbb{R}, \mathbb{R}^{+}, \mathbb{Z}, \mathbb{Z}^{+}\right\}$- time (continuous if $T \in\left\{\mathbb{R}, \mathbb{R}^{+}\right\}$, discrete if $\left.T \in\left\{\mathbb{Z}, \mathbb{Z}^{+}\right\}\right)$

A (semi)dynamical system is a continuous map

$$
\varphi: X \times T \rightarrow X
$$

such that for any $x \in X$ and $s, t \in T$

$$
\begin{gathered}
\varphi(\varphi(x, t), s)=\varphi(x, s+t) \\
\varphi(x, 0)=x
\end{gathered}
$$

- $T=\mathbb{R}$ - a flow
- $T=\mathbb{Z}^{+}$- a discrete semidynamical system (dsds)
- $\varphi_{t}: X \ni x \rightarrow \varphi(x, t) \in X$ - t-translation map
- $f:=\varphi_{1}$ - the generator (for discrete time only) identified with sds

Jules Henri Poincaré ${ }_{8}$

Invariant sets ${ }_{9}$

- the trajectory (orbit) of $x \in X$

$$
\varphi(x):=\{\varphi(x, t) \mid t \in T\}
$$

Invariant sets ${ }_{9}$

- the trajectory (orbit) of $x \in X$

$$
\varphi(x):=\{\varphi(x, t) \mid t \in T\}
$$

- $x \in X$ is stationary iff $\varphi(x)=x$

Invariant sets .

- the trajectory (orbit) of $x \in X$

$$
\varphi(x):=\{\varphi(x, t) \mid t \in T\}
$$

- $x \in X$ is stationary iff $\varphi(x)=x$
- $x \in X$ is periodic iff there exists a $t \in T^{+}$such that $\varphi(x, t)=x$

Invariant sets,

- the trajectory (orbit) of $x \in X$

$$
\varphi(x):=\{\varphi(x, t) \mid t \in T\}
$$

- $x \in X$ is stationary iff $\varphi(x)=x$
- $x \in X$ is periodic iff there exists a $t \in T^{+}$such that $\varphi(x, t)=x$
- the invariant part of $N \subset X$:

$$
\operatorname{Inv}(N, \varphi):=\{x \in N \mid \varphi(x) \subset N\}
$$

Invariant sets,

- the trajectory (orbit) of $x \in X$

$$
\varphi(x):=\{\varphi(x, t) \mid t \in T\}
$$

- $x \in X$ is stationary iff $\varphi(x)=x$
- $x \in X$ is periodic iff there exists a $t \in T^{+}$such that $\varphi(x, t)=x$
- the invariant part of $N \subset X$:

$$
\operatorname{Inv}(N, \varphi):=\{x \in N \mid \varphi(x) \subset N\}
$$

- $A \subset X$ is invariant if $\operatorname{Inv}(A, \varphi)=A$

Invariant sets,

- the trajectory (orbit) of $x \in X$

$$
\varphi(x):=\{\varphi(x, t) \mid t \in T\}
$$

- $x \in X$ is stationary iff $\varphi(x)=x$
- $x \in X$ is periodic iff there exists a $t \in T^{+}$such that $\varphi(x, t)=x$
- the invariant part of $N \subset X$:

$$
\operatorname{Inv}(N, \varphi):=\{x \in N \mid \varphi(x) \subset N\}
$$

- $A \subset X$ is invariant if $\operatorname{Inv}(A, \varphi)=A$
- alpha and omega limit sets

$$
\begin{aligned}
\alpha(x) & :=\left\{y \in X \mid \exists t_{n} \rightarrow-\infty \text { s.t. } y=\lim \varphi\left(x, t_{n}\right)\right\} \\
\omega(x) & :=\left\{y \in X \mid \exists t_{n} \rightarrow+\infty \text { s.t. } y=\lim \varphi\left(x, t_{n}\right)\right\}
\end{aligned}
$$

Invariant sets,

- the trajectory (orbit) of $x \in X$

$$
\varphi(x):=\{\varphi(x, t) \mid t \in T\}
$$

- $x \in X$ is stationary iff $\varphi(x)=x$
- $x \in X$ is periodic iff there exists a $t \in T^{+}$such that $\varphi(x, t)=x$
- the invariant part of $N \subset X$:

$$
\operatorname{Inv}(N, \varphi):=\{x \in N \mid \varphi(x) \subset N\}
$$

- $A \subset X$ is invariant if $\operatorname{Inv}(A, \varphi)=A$
- alpha and omega limit sets

$$
\begin{aligned}
\alpha(x) & :=\left\{y \in X \mid \exists t_{n} \rightarrow-\infty \text { s.t. } y=\lim \varphi\left(x, t_{n}\right)\right\} \\
\omega(x) & :=\left\{y \in X \mid \exists t_{n} \rightarrow+\infty \text { s.t. } y=\lim \varphi\left(x, t_{n}\right)\right\}
\end{aligned}
$$

Limit sets are invariant.

Invariant sets and limit sets ${ }_{10}$

Some invariant sets and limit sets.

Asymptotic dynamics ${ }_{11}$

- The main goal of the theory of dynamical systems is the understanding of the asymptotic behaviour of the trajectories, i.e. the number and structure of limit sets as well as their mutual relations

Asymptotic dynamics ${ }_{11}$

- The main goal of the theory of dynamical systems is the understanding of the asymptotic behaviour of the trajectories, i.e. the number and structure of limit sets as well as their mutual relations
- Up to the half of the 20th century the dominating opinion was that the a limit set may be a stationary point or the trajectory of a periodic point.

Asymptotic dynamics ${ }_{11}$

- The main goal of the theory of dynamical systems is the understanding of the asymptotic behaviour of the trajectories, i.e. the number and structure of limit sets as well as their mutual relations
- Up to the half of the 20th century the dominating opinion was that the a limit set may be a stationary point or the trajectory of a periodic point.
- The computers significantly contributed to the realization that the asymptotic behaviour may be much more complicated (chaotic).

Edward Lorenz ${ }_{12}$

Edward Lorenz 1917-2008

- during the 1950s became skeptical of the appropriateness of the mathematical models used in meteorology

Edward Lorenz ${ }_{12}$

- during the 1950s became skeptical of the appropriateness of the mathematical models used in meteorology
- in 1963 published the famous paper: Deterministic Nonperiodic Flow
- the Lorenz equations:

$$
\left\{\begin{array}{l}
\dot{x}=\sigma(y-x) \\
\dot{y}=R x-y-x z \\
\dot{z}=x y-b z
\end{array}\right.
$$

Edward Lorenz 1917-2008

Main contributors to the discovery of deterministic chaos ${ }_{13}$

- Henri Poincaré, 1890
- Mary Cartwright and John Littlewood, 1940's
- Andrey Kolmogorov and Yakov Sinai, 1950's
- Edward Lorenz, early 1960's
- Oleksandr Sharkovsky, 1964
- Stephen Smale, 1967
- Tien-Yien Li and James A. Yorke 1975

Symbolic dynamics ${ }_{14}$

Rotation by 120 degrees

Symbolic dynamics ${ }_{15}$

Mapping to sequences of symbols

Shift dynamics ${ }_{16}$

- Consider

$$
\Sigma_{k}:=\{0,1,2, \ldots k-1\}^{\mathbb{Z}}
$$

as a metric space with the metric

$$
d(\alpha, \beta):=\sum_{i=-\infty}^{\infty} \frac{1-\delta_{\alpha(i), \beta(i)}}{2^{|i|}}
$$

where $\delta_{m n}$ stands for the Kronecker delta.

Shift dynamics ${ }_{16}$

- Consider

$$
\Sigma_{k}:=\{0,1,2, \ldots k-1\}^{\mathbb{Z}}
$$

as a metric space with the metric

$$
d(\alpha, \beta):=\sum_{i=-\infty}^{\infty} \frac{1-\delta_{\alpha(i), \beta(i)}}{2^{|i|}}
$$

where $\delta_{m n}$ stands for the Kronecker delta.

- A full shift on k symbols is the discrete dynamical system generated on Σ_{k} by

$$
\sigma: \Sigma_{k} \ni \alpha \rightarrow \sigma(\alpha):=(n \rightarrow \alpha(n-1)) \in \Sigma_{k}
$$

Shift dynamics ${ }_{16}$

- Consider

$$
\Sigma_{k}:=\{0,1,2, \ldots k-1\}^{\mathbb{Z}}
$$

as a metric space with the metric

$$
d(\alpha, \beta):=\sum_{i=-\infty}^{\infty} \frac{1-\delta_{\alpha(i), \beta(i)}}{2^{|i|}},
$$

where $\delta_{m n}$ stands for the Kronecker delta.

- A full shift on k symbols is the discrete dynamical system generated on Σ_{k} by

$$
\sigma: \Sigma_{k} \ni \alpha \rightarrow \sigma(\alpha):=(n \rightarrow \alpha(n-1)) \in \Sigma_{k} .
$$

Features:

- Plenty of periodic points: Every finite sequence of symbols is in one-toone correspondence with a periodic point of σ
- Sensitive dependence on initial conditions: trajectories diverge exponentially fast

Smale horseshoe (1967) ${ }_{17}$

Smale horseshoe (1967) ${ }_{18}$

Smale horseshoe (1967) ${ }_{19}$

Smale horseshoe (1967) 20

Smale horseshoe (1967) ${ }_{21}$

Smale horseshoe (1967) ${ }_{22}$

Smale horseshoe (1967) ${ }_{23}$

Smale horseshoe (1967) ${ }_{24}$

.RL
.RR

Future
.LR
.LL

LL. RL. RR. LR.
Past and now

Smale horseshoe (1967) 25

Theorem. (Smale, 1967) Let N denote the square part of the domain of the horseshoe map h. Then there exists a homeomorphism $\rho: \operatorname{Inv}(N, h) \rightarrow \Sigma_{2}$ such that $\sigma \rho=\rho h$.

Lorenz equations around the origin ${ }_{26}$

Lorenz equations around the origin ${ }_{27}$

Lorenz equations around the origin ${ }_{28}$

Poincaré map in the Lorenz equations ${ }_{29}$

Problem 30

- Is horseshoe dynamics present in the Lorenz system?

Problem 30

- Is horseshoe dynamics present in the Lorenz system?
- Or maybe it is only present in the numerical scheme?

Problem 30

- Is horseshoe dynamics present in the Lorenz system?
- Or maybe it is only present in the numerical scheme?
- Or maybe the chaotic behaviour is only the consequence of the rounding errors?

References 31

- E.N. Lorenz, Deterministic Nonperiodic Flow, Journal of the Atmospheric Science (1963).
- R.L. Adler, A.G. Konheim, M.H.McAndrew, Topological entropy, Transactions of the American Mathematical Society (1965).
- S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. (1967).
- C. Sparrow, The Lorenz Equations: Bifurcations, Chaos and Strange Attractors, Springer-Verlag (1982).

Outline $_{32}$

- Dynamical systems
- Rigorous numerics of dynamical systems
- Homological invariants of dynamical systems
- Computing homological invariants
- Homology algorithms for subsets of \mathbb{R}^{d}
- Homology algorithms for maps of subsets of \mathbb{R}^{d}
- Applications

Ghost solutions $_{33}$

Consider the equation

$$
z^{\prime}=(\alpha i-|z|) z, \quad z \in \mathbb{C}
$$

The only periodic trajectory of this equation is the stationary point at the origin.

Ghost solutions $_{33}$

Consider the equation

$$
z^{\prime}=(\alpha i-|z|) z, \quad z \in \mathbb{C}
$$

The only periodic trajectory of this equation is the stationary point at the origin.
Consider its Euler discretization

$$
\Phi_{h}(z):=z(1+h(\alpha i-|z|))
$$

For every $h>0$ this discretization has invariant circles of radius

$$
r_{ \pm}:=\frac{1 \pm \sqrt{1-h^{2} \alpha^{2}}}{h}
$$

Disappearing Smale's horseshoe 34

- The logistic equation

$$
y^{\prime}=y(1-y)
$$

may be solved explicitly and it clearly does not exhibit chaotic behaviour

- However, Koçak and Hale (1991) prove that the two step numerical scheme

$$
\Phi_{h, \lambda}\binom{y_{1}}{y_{2}}:=\binom{\frac{1-\lambda}{1+\lambda} y_{2}+\frac{2 \lambda}{1+\lambda} y_{1}+2 h y_{1}\left(1-y_{2}\right)}{y_{1}}
$$

contains an invariant subset conjugate to a horseshoe for every $h>0$.

Fatal consequences of numerical errors ${ }_{35}$

- On 25th of February 1991 the Patriot missile system failed to intercept an Iraqi Scud and 28 American soldiers were killed.

Fatal consequences of numerical errors ${ }_{35}$

- On 25th of February 1991 the Patriot missile system failed to intercept an Iraqi Scud and 28 American soldiers were killed.
- Ariane 5's first test flight on 4 June 1996 failed, with the rocket self-destructing 37 seconds after launch because of a malfunction in the control software, resulting in a loss of more than $\$ 370$ million.

Fatal consequences of numerical errors ${ }_{35}$

- On 25th of February 1991 the Patriot missile system failed to intercept an Iraqi Scud and 28 American soldiers were killed.
- Ariane 5's first test flight on 4 June 1996 failed, with the rocket self-destructing 37 seconds after launch because of a malfunction in the control software, resulting in a loss of more than $\$ 370$ million.

In both cases the failures were attributed to numerical errors.

Interval arithmetic ${ }_{36}$

- $\hat{\mathbb{R}} \subset \overline{\mathbb{R}}$ - fixed, finite set of representable numbers

Interval arithmetic ${ }_{36}$

- $\hat{\mathbb{R}} \subset \overline{\mathbb{R}}$ - fixed, finite set of representable numbers
- representable intervals:

$$
\mathcal{I}:=\{[a, b] \mid a, b \in \hat{\mathbb{R}}, a \leq b\}
$$

Interval arithmetic ${ }_{36}$

- $\hat{\mathbb{R}} \subset \overline{\mathbb{R}}$ - fixed, finite set of representable numbers
- representable intervals:

$$
\mathcal{I}:=\{[a, b] \mid a, b \in \hat{\mathbb{R}}, a \leq b\}
$$

- For $\diamond \in\{+,-, *, /\}$ and $I, J \in \mathcal{I}$ denote by $I \diamond J$ the smallest representable interval that contains

$$
\{a \diamond b \mid a \in I, b \in J\} .
$$

Interval arithmetic ${ }_{36}$

- $\hat{\mathbb{R}} \subset \overline{\mathbb{R}}$ — fixed, finite set of representable numbers
- representable intervals:

$$
\mathcal{I}:=\{[a, b] \mid a, b \in \hat{\mathbb{R}}, a \leq b\}
$$

- For $\diamond \in\{+,-, *, /\}$ and $I, J \in \mathcal{I}$ denote by $I \diamond J$ the smallest representable interval that contains

$$
\{a \diamond b \mid a \in I, b \in J\} .
$$

Given the endpoints of I and J, one can easily construct the endpoints of $I \diamond J$.

Interval arithmetic ${ }_{36}$

- $\hat{\mathbb{R}} \subset \overline{\mathbb{R}}$ — fixed, finite set of representable numbers
- representable intervals:

$$
\mathcal{I}:=\{[a, b] \mid a, b \in \hat{\mathbb{R}}, a \leq b\}
$$

- For $\diamond \in\{+,-, *, /\}$ and $I, J \in \mathcal{I}$ denote by $I \diamond J$ the smallest representable interval that contains

$$
\{a \diamond b \mid a \in I, b \in J\} .
$$

Given the endpoints of I and J, one can easily construct the endpoints of $I \diamond J$.

- first proposed by M. Warmus in 1956
- rediscovered by R.E. Moore in 1959

The simplest topological tool: Darboux property ${ }_{37}$

Discretization in time ${ }_{38}$

Discretization in time 39

Differential

 equation
Numerical Analysis of Dynamical Systems 40

Numerical Analysis of Dynamical Systems ${ }_{41}$

Discretization in space ${ }_{42}$

Discretization in space ${ }_{43}$

Discretization in space ${ }_{44}$

Discretization in space ${ }_{45}$

Discretization in space ${ }_{46}$

Discretization in space ${ }_{47}$

Discretization in space ${ }_{48}$

- A combinatorial multivalued map $\mathcal{F}: \mathcal{X} \rightrightarrows \mathcal{X}$ is a combinatorial enclosure of $f: X \rightarrow X$ if for every $Q \in \mathcal{X}$

$$
f(Q) \subset \operatorname{int}|\mathcal{F}(Q)| .
$$

Discretization in space ${ }_{48}$

- A combinatorial multivalued map $\mathcal{F}: \mathcal{X} \rightrightarrows \mathcal{X}$ is a combinatorial enclosure of $f: X \rightarrow X$ if for every $Q \in \mathcal{X}$

$$
f(Q) \subset \operatorname{int}|\mathcal{F}(Q)| .
$$

- In this case we say that f is a selector of \mathcal{F}.

Numerical Analysis of Dynamical Systems 49

Numerical Analysis of Dynamical Systems 50

Numerical Analysis of Dynamical Systems 51

Numerical Analysis of Dynamical Systems 52

Numerical Analysis of Dynamical Systems ${ }_{53}$

Numerical Analysis of Dynamical Systems 54

Numerical Analysis of Dynamical Systems ${ }_{55}$

Chaos in Lorenz equations 56

Theorem. (1995) Consider the Lorenz equations

$$
\left\{\begin{array}{l}
\dot{x}=\sigma(y-x) \\
\dot{y}=R x-y-x z \\
\dot{z}=x y-b z
\end{array}\right.
$$

and put

$$
P:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=53\right\}
$$

For all parameter values in a sufficiently small neighborhood of $(\sigma, R, b)=(45,54,10)$, there exists a Poincaré section $N \subset P$ such that the Poincaré map g induced by (1) is Lipschitz and well defined. Furthermore, there exists a $d \in \mathbb{N}$ and a continuous surjection $\rho: \operatorname{Inv}(N, g) \rightarrow \Sigma_{2}$ such that

$$
\rho \circ g^{d}=\sigma \circ \rho
$$

where $\sigma: \Sigma_{2} \rightarrow \Sigma_{2}$ is the full shift dynamics on two symbols.

Rigorous numerics of dynamical systems 57

- Goal: use the outcome of numerical simulations to draw rigorous conclusions about the behaviour of the original dynamical system.

Rigorous numerics of dynamical systems 57

- Goal: use the outcome of numerical simulations to draw rigorous conclusions about the behaviour of the original dynamical system.
- Needed:
(1) exact bounds for the errors resulting from the time discretization and space discretization

Rigorous numerics of dynamical systems 57

- Goal: use the outcome of numerical simulations to draw rigorous conclusions about the behaviour of the original dynamical system.
- Needed:
(1) exact bounds for the errors resulting from the time discretization and space discretization
(2) a method to draw conclusions about the original dynamical system from the outcome of numerical simulations

Interval arithmetic 58

- $\hat{\mathbb{R}} \subset \overline{\mathbb{R}}$ - fixed, finite set of representable numbers

Interval arithmetic 58

- $\hat{\mathbb{R}} \subset \overline{\mathbb{R}}$ - fixed, finite set of representable numbers
- representable intervals:

$$
\mathcal{I}:=\{[a, b] \mid a, b \in \hat{\mathbb{R}}, a \leq b\}
$$

Interval arithmetic 58

- $\hat{\mathbb{R}} \subset \overline{\mathbb{R}}$ - fixed, finite set of representable numbers
- representable intervals:

$$
\mathcal{I}:=\{[a, b] \mid a, b \in \hat{\mathbb{R}}, a \leq b\}
$$

- For $\diamond \in\{+,-, *, /\}$ and $I, J \in \mathcal{I}$ denote by $I \diamond J$ the smallest representable interval that contains

$$
\{a \diamond b \mid a \in I, b \in J\} .
$$

Interval arithmetic 58

- $\hat{\mathbb{R}} \subset \overline{\mathbb{R}}$ — fixed, finite set of representable numbers
- representable intervals:

$$
\mathcal{I}:=\{[a, b] \mid a, b \in \hat{\mathbb{R}}, a \leq b\}
$$

- For $\diamond \in\{+,-, *, /\}$ and $I, J \in \mathcal{I}$ denote by $I \diamond J$ the smallest representable interval that contains

$$
\{a \diamond b \mid a \in I, b \in J\} .
$$

Given the endpoints of I and J, one can easily construct the endpoints of $I \diamond J$.

Interval arithmetic 58

- $\hat{\mathbb{R}} \subset \overline{\mathbb{R}}$ — fixed, finite set of representable numbers
- representable intervals:

$$
\mathcal{I}:=\{[a, b] \mid a, b \in \hat{\mathbb{R}}, a \leq b\}
$$

- For $\diamond \in\{+,-, *, /\}$ and $I, J \in \mathcal{I}$ denote by $I \diamond J$ the smallest representable interval that contains

$$
\{a \diamond b \mid a \in I, b \in J\} .
$$

Given the endpoints of I and J, one can easily construct the endpoints of $I \diamond J$.

- first proposed by M. Warmus in 1956
- rediscovered by R.E. Moore in 1959

The simplest topological tool: Darboux property ${ }_{59}$

Advanced tool: topology of multivalued maps 60

Multivalued maps ${ }_{61}$

Let X, Y be topological spaces. A multivalued map F : $X \rightrightarrows Y$ from X to Y is a function $F: X \rightarrow 2^{Y}$ from X to subsets of Y.

Multivalued maps 61

Let X, Y be topological spaces. A multivalued map F : $X \rightrightarrows Y$ from X to Y is a function $F: X \rightarrow 2^{Y}$ from X to subsets of Y.

- The image of $A \subset X$ is

$$
F(A):=\bigcup_{x \in A} F(x) .
$$

Multivalued maps ${ }_{61}$

Let X, Y be topological spaces. A multivalued map F : $X \rightrightarrows Y$ from X to Y is a function $F: X \rightarrow 2^{Y}$ from X to subsets of Y.

- The image of $A \subset X$ is

$$
F(A):=\bigcup_{x \in A} F(x) .
$$

- The weak preimage of $B \subset Y$ under F is

$$
F^{-1}(B):=\{x \in X \mid F(x) \cap B \neq \emptyset\} .
$$

Multivalued maps 61

Let X, Y be topological spaces. A multivalued map F : $X \rightrightarrows Y$ from X to Y is a function $F: X \rightarrow 2^{Y}$ from X to subsets of Y.

- The image of $A \subset X$ is

$$
F(A):=\bigcup_{x \in A} F(x) .
$$

- The weak preimage of $B \subset Y$ under F is

$$
F^{-1}(B):=\{x \in X \mid F(x) \cap B \neq \emptyset\} .
$$

F is upper semicontinuous if $F^{-1}(B)$ is closed for any closed set $B \subset Y$, and it is lower semicontinuous if the set $F^{-1}(U)$ is open for any open set $U \subset Y$.

Representations of rational functions 62

- $f: \mathbb{R}^{m} \rightarrow \rightarrow \mathbb{R}^{n}$ - a rational function.

Representations of rational functions 62

- $f: \mathbb{R}^{m} \rightarrow \rightarrow \mathbb{R}^{n}$ - a rational function.
- $[f]: \mathcal{I}^{m} \rightarrow \rightarrow \mathcal{I}^{n}$, the interval extension of f obtained by replacing the arithmetic operations in f with their interval counterparts

Representations of rational functions 62

- $f: \mathbb{R}^{m} \rightarrow \rightarrow \mathbb{R}^{n}$ - a rational function.
- $[f]: \mathcal{I}^{m} \multimap \mathcal{I}^{n}$, the interval extension of f obtained by replacing the arithmetic operations in f with their interval counterparts

Proposition. Assume $f: \mathbb{R}^{m} \rightarrow \rightarrow \mathbb{R}^{n}$ is a rational function.
Then for any $\mathbf{x}_{1}, \ldots \mathbf{x}_{n} \in \operatorname{dom}[f]$ we have

$$
f\left(\mathbf{x}_{1}, \ldots \mathbf{x}_{n}\right) \subset[f]\left(\mathbf{x}_{1}, \ldots \mathbf{x}_{n}\right) .
$$

Representations of rational functions 62

- $f: \mathbb{R}^{m} \rightarrow \rightarrow \mathbb{R}^{n}$ - a rational function.
- $[f]: \mathcal{I}^{m} \multimap \mathcal{I}^{n}$, the interval extension of f obtained by replacing the arithmetic operations in f with their interval counterparts

Proposition. Assume $f: \mathbb{R}^{m} \rightarrow \rightarrow \mathbb{R}^{n}$ is a rational function.
Then for any $\mathbf{x}_{1}, \ldots \mathbf{x}_{n} \in \operatorname{dom}[f]$ we have

$$
f\left(\mathbf{x}_{1}, \ldots \mathbf{x}_{n}\right) \subset[f]\left(\mathbf{x}_{1}, \ldots \mathbf{x}_{n}\right) .
$$

Arbitrary functions ${ }_{63}$

- $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$
- $g: \mathbb{R}^{m} \multimap \mathbb{R}^{n}$ - a rational approximation of f such that for $x \in D$ and some $\mathbf{w} \in \mathcal{I}^{n}$

$$
f(x)-g(x) \in \mathbf{w}
$$

- then

$$
f(\mathbf{x}) \subset[g](\mathbf{x})[+] \mathbf{w}
$$

References 64

- M. Warmus, Calculus of approximations, Bull. de l'Académie Polonaise des Sciences Cl. III) (1956).
- R.E. Moore, Interval analysis, Prentice-Hall (1966).
- J.K. Hale and H. Koçak, Dynamics and Bifurcations, SpringerVerlag (1991).
- K. Mischaikow, MM, Chaos in Lorenz equations: a computer assisted proof, Bull. Amer. Math. Soc. (N.S.) (1995).
- K. Mischaikow, MM, Chaos in the Lorenz equations: a computer assisted proof. Part II: details, Mathematics of Computation (1998).
- A.M. Stuart, A.R. Humphries, Dynamical Systems and Numerical Analysis, Cambridge Univ. Press (1998).

Outline 65

- Dynamical systems
- Rigorous numerics of dynamical systems
- Homological invariants of dynamical systems
- Computing homological invariants
- Homology algorithms for subsets of \mathbb{R}^{d}
- Homology algorithms for maps of subsets of \mathbb{R}^{d}
- Applications

Ważewski Theorem 6

Tadeusz Ważewski, 1896-1972

Ważewski Theorem ${ }_{67}$

Ważewski Theorem 68

Isolated invariant sets 69

- a compact set N is an isolating neighborhood iff

$$
x \in \operatorname{bd} N \Rightarrow \varphi(x) \not \subset N .
$$

Isolated invariant sets 69

- a compact set N is an isolating neighborhood iff

$$
x \in \operatorname{bd} N \Rightarrow \varphi(x) \not \subset N .
$$

- A compact set N is an isolating block iff

$$
N^{-}:=\{x \in N \mid \exists \epsilon>0: \varphi(x, t) \notin N \text { for } 0<t<\epsilon\}
$$

Isolated invariant sets 69

- a compact set N is an isolating neighborhood iff

$$
x \in \operatorname{bd} N \Rightarrow \varphi(x) \not \subset N .
$$

- A compact set N is an isolating block iff

$$
N^{-}:=\{x \in N \mid \exists \epsilon>0: \varphi(x, t) \notin N \text { for } 0<t<\epsilon\}
$$

N is an isolating neighborhood iff $\operatorname{Inv}(N, \varphi) \subset \operatorname{int} N$.

Isolated invariant sets 69

- a compact set N is an isolating neighborhood iff

$$
x \in \operatorname{bd} N \Rightarrow \varphi(x) \not \subset N .
$$

- A compact set N is an isolating block iff

$$
N^{-}:=\{x \in N \mid \exists \epsilon>0: \varphi(x, t) \notin N \text { for } 0<t<\epsilon\}
$$

N is an isolating neighborhood iff $\operatorname{Inv}(N, \varphi) \subset \operatorname{int} N$.

A compact set $S \subset X$ is called an isolated invariant set if there exists an isolating neighborhood N such that $S=\operatorname{Inv}(N, \varphi)$.

Conley index ${ }_{70}$

Theorem. (Conley and students, 1978)

- For every isolating neighborhood N of S there exists an isolating block M such that $S \subset M \subset N$.

Conley index ${ }_{70}$

Theorem. (Conley and students, 1978)

- For every isolating neighborhood N of S there exists an isolating block M such that $S \subset M \subset N$.
- If M_{1} and M_{2} are two such blocks, then $\left(M_{1} / M_{1}^{-},\left[M_{1}^{-}\right]\right)$ and $\left(M_{2} / M_{2}^{-},\left[M_{2}^{-}\right]\right)$are homotopy equivalent and, in particular,

$$
H^{*}\left(M_{1}, M_{1}^{-}\right) \cong H^{*}\left(M_{2}, M_{2}^{-}\right) .
$$

Conley index ${ }_{70}$

Theorem. (Conley and students, 1978)

- For every isolating neighborhood N of S there exists an isolating block M such that $S \subset M \subset N$.
- If M_{1} and M_{2} are two such blocks, then $\left(M_{1} / M_{1}^{-},\left[M_{1}^{-}\right]\right)$ and $\left(M_{2} / M_{2}^{-},\left[M_{2}^{-}\right]\right)$are homotopy equivalent and, in particular,

$$
H^{*}\left(M_{1}, M_{1}^{-}\right) \cong H^{*}\left(M_{2}, M_{2}^{-}\right) .
$$

The cohomological Conley index of S and N is

$$
\operatorname{Con}^{*}(N, \varphi):=\operatorname{Con}^{*}(S, \varphi):=H^{*}\left(M, M^{-}\right)
$$

Charles Conley ${ }_{71}$

An example ${ }_{72}$

An example ${ }_{73}$

Main properties ${ }_{74}$

Theorem. (Conley and students, 1978)

- Ważewski property:

$$
\operatorname{Con}^{*}(N, \varphi) \neq 0 \Rightarrow \operatorname{Inv}(N, \varphi) \neq \emptyset .
$$

- Hopf property: If $\chi\left(\operatorname{Con}^{*}(N, \varphi)\right) \neq 0$ then there exists an $x \in N$ such that $\varphi(x)=\{x\}$.
- Additivity: If $S=S_{1} \cup S_{2}$ and $S_{1} \cap S_{2} \neq \emptyset$ then

$$
\operatorname{Con}^{*}(S, \varphi)=\operatorname{Con}^{*}\left(S_{1}, \varphi\right) \oplus \operatorname{Con}^{*}\left(S_{2}, \varphi\right)
$$

- Homotopy invariance: If N is an isolating neighborhood for a family of flows φ_{t} continuously depending on t then

$$
\operatorname{Con}^{*}\left(N, \varphi_{0}\right)=\operatorname{Con}^{*}\left(N, \varphi_{1}\right) .
$$

Discrete case $_{75}$

Let $f: X \rightarrow X$ be the generator of φ, i.e. $f(x):=\varphi(x, 1)$.

Discrete $^{\text {case }}{ }_{75}$

Let $f: X \rightarrow X$ be the generator of φ, i.e. $f(x):=\varphi(x, 1)$.

- A function $\sigma: \mathbb{Z} \rightarrow N$ is a solution to f through x in $N \subset X$ if $\sigma(0)=x$ and $f(\sigma(n))=\sigma(n+1)$ for all $n \in \mathbb{Z}$.

Discrete $^{\text {case }}{ }_{75}$

Let $f: X \rightarrow X$ be the generator of φ, i.e. $f(x):=\varphi(x, 1)$.

- A function $\sigma: \mathbb{Z} \rightarrow N$ is a solution to f through x in $N \subset X$ if $\sigma(0)=x$ and $f(\sigma(n))=\sigma(n+1)$ for all $n \in \mathbb{Z}$.
- invariant part of $N \subset X$:

$$
\operatorname{Inv}(N, f):=\{x \in N \mid \exists \sigma: \mathbb{Z} \rightarrow N \text { a solution to } f \text { through } x\}
$$

Discrete $^{\text {case }}{ }_{75}$

Let $f: X \rightarrow X$ be the generator of φ, i.e. $f(x):=\varphi(x, 1)$.

- A function $\sigma: \mathbb{Z} \rightarrow N$ is a solution to f through x in $N \subset X$ if $\sigma(0)=x$ and $f(\sigma(n))=\sigma(n+1)$ for all $n \in \mathbb{Z}$.
- invariant part of $N \subset X$:

$$
\operatorname{Inv}(N, f):=\{x \in N \mid \exists \sigma: \mathbb{Z} \rightarrow N \text { a solution to } f \text { through } x\}
$$

- A compact set $S \subset X$ is called an isolated invariant set for f if there exists a compact neighborhood N of S such that $S=\operatorname{Inv}(N, \varphi) \subset \operatorname{int} N$.

Discrete $^{\text {case }}{ }_{75}$

Let $f: X \rightarrow X$ be the generator of φ, i.e. $f(x):=\varphi(x, 1)$.

- A function $\sigma: \mathbb{Z} \rightarrow N$ is a solution to f through x in $N \subset X$ if $\sigma(0)=x$ and $f(\sigma(n))=\sigma(n+1)$ for all $n \in \mathbb{Z}$.
- invariant part of $N \subset X$:

$$
\operatorname{Inv}(N, f):=\{x \in N \mid \exists \sigma: \mathbb{Z} \rightarrow N \text { a solution to } f \text { through } x\}
$$

- A compact set $S \subset X$ is called an isolated invariant set for f if there exists a compact neighborhood N of S such that $S=\operatorname{Inv}(N, \varphi) \subset \operatorname{int} N$.
- Then, N is called an isolating neighborhood (for S).

Index pairs ${ }_{76}$

A pair of compact sets $P=\left(P_{1}, P_{2}\right)$ is called an index pair for f and an isolated invariant set S iff
(i) (positive relative invariance)

$$
f\left(P_{2}\right) \cap P_{1} \subset P_{2}
$$

(ii) (exit set)

$$
P_{1} \cap \operatorname{cl}\left(f\left(P_{1}\right) \backslash P_{1}\right) \subset P_{2}
$$

(iii) (isolation)

$$
S=\operatorname{Inv}\left(\operatorname{cl}\left(P_{1} \backslash P_{2}\right), f\right) \subset \operatorname{int}\left(P_{1} \backslash P_{2}\right)
$$

Index pairs ${ }_{76}$

A pair of compact sets $P=\left(P_{1}, P_{2}\right)$ is called an index pair for f and an isolated invariant set S iff
(i) (positive relative invariance)

$$
f\left(P_{2}\right) \cap P_{1} \subset P_{2}
$$

(ii) (exit set)

$$
P_{1} \cap \operatorname{cl}\left(f\left(P_{1}\right) \backslash P_{1}\right) \subset P_{2}
$$

(iii) (isolation)

$$
S=\operatorname{Inv}\left(\operatorname{cl}\left(P_{1} \backslash P_{2}\right), f\right) \subset \operatorname{int}\left(P_{1} \backslash P_{2}\right)
$$

Index pairs ${ }_{77}$

Proposition. If pair $P=\left(P_{1}, P_{2}\right)$ of compact subsets of an isolating neighborhood N satisfies

$$
\begin{gathered}
f\left(P_{2}\right) \cap P_{1} \subset P_{2} \\
P_{1} \backslash f^{-1}(N) \subset P_{2} \\
\operatorname{Inv} N \subset \operatorname{int}\left(P_{1} \backslash P_{2}\right) .
\end{gathered}
$$

then P is an index pair for f and $\operatorname{Inv}(N, f)$.
$H^{*}\left(P_{1}, P_{2}\right)$ is not an invariant.

Leray Functor 78

- \mathcal{E} - a category

Leray Functor ${ }_{78}$

- \mathcal{E} - a category
- the category of endomorphisms of \mathcal{E} :
- Objects: pairs (E, e), where $A \in \mathcal{E}$ and $e \in \mathcal{E}(E, E)$
- Morphisms: $\psi\left(E_{1},, e_{1}\right) \rightarrow\left(E_{2}, e_{2}\right)$ iff $\psi \in \mathcal{E}\left(E_{1}, E_{2}\right)$ and $\psi e_{1}=e_{2} \psi$

Leray Functor $_{78}$

- \mathcal{E} - a category
- the category of endomorphisms of \mathcal{E} :
- Objects: pairs (E, e), where $A \in \mathcal{E}$ and $e \in \mathcal{E}(E, E)$
- Morphisms: $\psi\left(E_{1},, e_{1}\right) \rightarrow\left(E_{2}, e_{2}\right)$ iff $\psi \in \mathcal{E}\left(E_{1}, E_{2}\right)$ and $\psi e_{1}=e_{2} \psi$
- the category of automorphisms of \mathcal{E} - full subcategory of Endo (\mathcal{E}) consisting of pairs $(A, a) \in \operatorname{Endo}(\mathcal{E})$ such that $a \in \mathcal{E}(A, A)$ is an automorphism

Leray Functor ${ }_{78}$

- \mathcal{E} - a category
- the category of endomorphisms of \mathcal{E} :
- Objects: pairs (E, e), where $A \in \mathcal{E}$ and $e \in \mathcal{E}(E, E)$
- Morphisms: $\psi\left(E_{1},, e_{1}\right) \rightarrow\left(E_{2}, e_{2}\right)$ iff $\psi \in \mathcal{E}\left(E_{1}, E_{2}\right)$ and $\psi e_{1}=e_{2} \psi$
- the category of automorphisms of \mathcal{E} - full subcategory of $\operatorname{Endo}(\mathcal{E})$ consisting of pairs $(A, a) \in \operatorname{Endo}(\mathcal{E})$ such that $a \in \mathcal{E}(A, A)$ is an automorphism
- \mathcal{V}_{0} - the category of finitely dimensional vector spaces over \mathbb{R}

Leray Functor $_{78}$

- \mathcal{E} - a category
- the category of endomorphisms of \mathcal{E} :
- Objects: pairs (E, e), where $A \in \mathcal{E}$ and $e \in \mathcal{E}(E, E)$
- Morphisms: $\psi\left(E_{1},, e_{1}\right) \rightarrow\left(E_{2}, e_{2}\right)$ iff $\psi \in \mathcal{E}\left(E_{1}, E_{2}\right)$ and $\psi e_{1}=e_{2} \psi$
- the category of automorphisms of \mathcal{E} - full subcategory of $\operatorname{Endo}(\mathcal{E})$ consisting of pairs $(A, a) \in \operatorname{Endo}(\mathcal{E})$ such that $a \in \mathcal{E}(A, A)$ is an automorphism
- \mathcal{V}_{0} - the category of finitely dimensional vector spaces over \mathbb{R}
- the generalized kernel of $\alpha \in \mathcal{V}_{0}(V, V)$ is

$$
\operatorname{gker} \alpha:=\bigcup_{n \in \mathbb{N}} \operatorname{ker} \alpha^{n}
$$

Leray Functor $_{78}$

- \mathcal{E} - a category
- the category of endomorphisms of \mathcal{E} :
- Objects: pairs (E, e), where $A \in \mathcal{E}$ and $e \in \mathcal{E}(E, E)$
- Morphisms: $\psi\left(E_{1},, e_{1}\right) \rightarrow\left(E_{2}, e_{2}\right)$ iff $\psi \in \mathcal{E}\left(E_{1}, E_{2}\right)$ and $\psi e_{1}=e_{2} \psi$
- the category of automorphisms of \mathcal{E} - full subcategory of $\operatorname{Endo}(\mathcal{E})$ consisting of pairs $(A, a) \in \operatorname{Endo}(\mathcal{E})$ such that $a \in \mathcal{E}(A, A)$ is an automorphism
- \mathcal{V}_{0} - the category of finitely dimensional vector spaces over \mathbb{R}
- the generalized kernel of $\alpha \in \mathcal{V}_{0}(V, V)$ is

$$
\operatorname{gker} \alpha:=\bigcup_{n \in \mathbb{N}} \operatorname{ker} \alpha^{n}
$$

- the Leray functor $L: \operatorname{Endo}\left(\mathcal{V}_{0}\right) \rightarrow \operatorname{Auto}\left(\mathcal{V}_{0}\right):$

$$
L(V, v):=\left(V / \operatorname{gker} v, v^{\prime}\right)
$$

Leray Functor $_{78}$

- \mathcal{E} - a category
- the category of endomorphisms of \mathcal{E} :
- Objects: pairs (E, e), where $A \in \mathcal{E}$ and $e \in \mathcal{E}(E, E)$
- Morphisms: $\psi\left(E_{1},, e_{1}\right) \rightarrow\left(E_{2}, e_{2}\right)$ iff $\psi \in \mathcal{E}\left(E_{1}, E_{2}\right)$ and $\psi e_{1}=e_{2} \psi$
- the category of automorphisms of \mathcal{E} - full subcategory of $\operatorname{Endo}(\mathcal{E})$ consisting of pairs $(A, a) \in \operatorname{Endo}(\mathcal{E})$ such that $a \in \mathcal{E}(A, A)$ is an automorphism
- \mathcal{V}_{0} - the category of finitely dimensional vector spaces over \mathbb{R}
- the generalized kernel of $\alpha \in \mathcal{V}_{0}(V, V)$ is

$$
\operatorname{gker} \alpha:=\bigcup_{n \in \mathbb{N}} \operatorname{ker} \alpha^{n}
$$

- the Leray functor $L: \operatorname{Endo}\left(\mathcal{V}_{0}\right) \rightarrow \operatorname{Auto}\left(\mathcal{V}_{0}\right):$

$$
L(V, v):=\left(V / \operatorname{gker} v, v^{\prime}\right)
$$

Index quadruples and index maps ${ }_{79}$

A quadruple $P=\left(P_{1}, P_{2}, \bar{P}_{1}, \bar{P}_{2}\right)$ is an index quadruple for f and S if $\left(P_{1}, P_{2}\right)$ is an index pair for f and S and $\left(\bar{P}_{1}, \bar{P}_{2}\right)$ is a topological pair such that the map

$$
\begin{gathered}
f_{P}:\left(P_{1}, P_{2}\right) \ni x \rightarrow f(x) \in\left(\bar{P}_{1}, \bar{P}_{2}\right) \\
\iota_{P}:\left(P_{1}, P_{2}\right) \ni x \rightarrow x \in\left(\bar{P}_{1}, \bar{P}_{2}\right)
\end{gathered}
$$

are well defined and ι_{P} is an excision (induces an isomorphism in cohomology)

Index quadruples and index maps ${ }_{79}$

A quadruple $P=\left(P_{1}, P_{2}, \bar{P}_{1}, \bar{P}_{2}\right)$ is an index quadruple for f and S if $\left(P_{1}, P_{2}\right)$ is an index pair for f and S and $\left(\bar{P}_{1}, \bar{P}_{2}\right)$ is a topological pair such that the map

$$
\begin{gathered}
f_{P}:\left(P_{1}, P_{2}\right) \ni x \rightarrow f(x) \in\left(\bar{P}_{1}, \bar{P}_{2}\right) \\
\iota_{P}:\left(P_{1}, P_{2}\right) \ni x \rightarrow x \in\left(\bar{P}_{1}, \bar{P}_{2}\right)
\end{gathered}
$$

are well defined and ι_{P} is an excision (induces an isomorphism in cohomology)

Given an index quadruple, we define the index map as the composition

$$
I_{P}:=H^{*}\left(f_{P \bar{P}}\right) \circ H^{*}\left(\iota_{P}\right)^{-1}
$$

The Conley index for discrete dynamical systems 80

Theorem. (MM,1990,2005) For every isolating neighborhood N of f there exists an index quadruple P such that

$$
\operatorname{Inv}(N, f) \subset P_{1} \subset \bar{P}_{1} \subset N .
$$

Moreover, if P and Q are two such quadruples, then

$$
L\left(H^{*}\left(P_{1}, P_{2}\right), I_{P}\right) \cong L\left(H^{*}\left(Q_{1}, Q_{2}\right), I_{Q}\right)
$$

The Conley index for discrete dynamical systems sо

Theorem. (MM,1990,2005) For every isolating neighborhood N of f there exists an index quadruple P such that

$$
\operatorname{Inv}(N, f) \subset P_{1} \subset \bar{P}_{1} \subset N
$$

Moreover, if P and Q are two such quadruples, then

$$
L\left(H^{*}\left(P_{1}, P_{2}\right), I_{P}\right) \cong L\left(H^{*}\left(Q_{1}, Q_{2}\right), I_{Q}\right)
$$

The Conley index of f in N is

$$
\left(C H^{*}(N, f), \chi(N, f)\right):=L\left(H^{*}\left(P_{1}, P_{2}\right), I_{P}\right) .
$$

- J.W. Robbin, D. Salamon, 1988 - shape theory, inverse limit functor
- MM, 1990 - cohomology, Leray functor
- A. Szymczak, 1995 - homotopy, Szymczak functor (most general)
- J. Franks, D. Richeson, 2000 - a reformulation of Szymczak construction in terms of shift equivalence

An example ${ }_{82}$

An example ${ }_{83}$

Main properties 84

Theorem.

- Ważewski property (J.W. Robbin, D. Salamon, 1988):

$$
\operatorname{Con}^{*}(N, f) \neq 0 \Rightarrow \operatorname{Inv}(N, f) \neq \emptyset
$$

- Lefschetz property (MM, 1989): If $\Lambda(\chi(N, f)) \neq 0$ then there exists an $x \in N$ such that $f(x)=x$.
- Additivity:(J.W. Robbin, D. Salamon, 1988): If $S=$ $S_{1} \cup S_{2}$ and $S_{1} \cap S_{2} \neq \emptyset$ then

$$
\operatorname{Con}^{*}(S, f)=\operatorname{Con}^{*}\left(S_{1}, f\right) \oplus \operatorname{Con}^{*}\left(S_{2}, f\right)
$$

- Homotopy invariance:(J.W. Robbin, D. Salamon, 1988): If N is an isolating neighborhood for a family of flows f_{t} continuously depending on t then

$$
\operatorname{Con}^{*}\left(N, f_{0}\right)=\operatorname{Con}^{*}\left(N, f_{1}\right) .
$$

Discrete vs. continuous case. я5

Theorem. (MM, 1990) Let $\varphi: X \times \mathbb{R} \rightarrow X$ be a flow and for $t \in \mathbb{R}$ let $\varphi_{t}: X \rightarrow X$ be the map defined by

$$
\varphi_{t}(x):=\varphi(x, t) .
$$

If $S \subset X$ is a compact set, then the following conditions are equivalent.
(i) S is an isolated invariant set with respect to φ,
(ii) S is an isolated invariant set with respect to φ_{t} for all $t \neq 0$,
(iii) S is an isolated invariant set with respect to φ_{t} for some $t \neq 0$.
Moreover, if one of the above conditions is satisfied, then for any $t \neq 0$

$$
\begin{gathered}
\chi\left(S, \varphi_{t}\right)=\operatorname{id}, \\
\operatorname{Con}^{*}\left(S, \varphi_{t}\right) \cong \operatorname{Con}^{*}(S, \varphi) .
\end{gathered}
$$

Conley index and horseshoe dynamics ${ }_{86}$

Given a compact set N and $\alpha \in\{0,1\}^{n}$ put

$$
N_{\alpha}:=\bigcap_{i=0}^{n-1} f^{i}\left(N_{\alpha_{i}}\right)
$$

and for $\bar{\alpha}=\left(\alpha^{1}, \alpha^{2}, \ldots \alpha^{m}\right)$ with $\alpha^{j} \in\{0,1\}^{n}$ put

$$
N_{\bar{\alpha}}:=\bigcup_{j=1}^{m} N_{\alpha^{j}} .
$$

Conley index and horseshoe dynamics ${ }_{86}$

Given a compact set N and $\alpha \in\{0,1\}^{n}$ put

$$
N_{\alpha}:=\bigcap_{i=0}^{n-1} f^{i}\left(N_{\alpha_{i}}\right)
$$

and for $\bar{\alpha}=\left(\alpha^{1}, \alpha^{2}, \ldots \alpha^{m}\right)$ with $\alpha^{j} \in\{0,1\}^{n}$ put

$$
N_{\bar{\alpha}}:=\bigcup_{j=1}^{m} N_{\alpha^{j}} .
$$

Proposition. If N is an isolating neighborhood for f then so is N_{α} and $N_{\bar{\alpha}}$

Conley index and horseshoe dynamics ${ }_{87}$

Theorem. (K. Mischaikow, MM, 1993) Assume

$$
N=N_{0} \cup N_{1}
$$

is an isolating neighbourhood for f such that N_{0} and N_{1} are disjoint compact polyhedra. If for $k=0,1$

$$
\operatorname{Con}^{n}\left(N_{k}\right)=\left\{\begin{array}{cl}
(\mathbf{Q}, \text { Id }) & \text { if } n=1 \\
0 & \text { otherwise }
\end{array}\right.
$$

and $\chi^{*}\left(N_{00,01,11}, f\right), \chi^{*}\left(N_{00,10,11}, f\right)$ are different from identity then there exists a $d \in \mathbf{N}$ and a continuous surjection

$$
\rho: \operatorname{Inv}(N, f) \rightarrow \Sigma_{2}
$$

such that

$$
\rho \circ f^{d}=\sigma \circ \rho
$$

where $\sigma: \Sigma_{2} \rightarrow \Sigma_{2}$ is the full shift dynamics on two symbols. Moreover, for each periodic sequence $\alpha \in \Sigma_{2}$ there exists a periodic point $x \in N$ such that $\rho(x)=\alpha$.

An example ${ }_{88}$

An example ${ }_{89}$

$$
\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

An example 90

References ${ }_{91}$

- T. Ważewski, Une méthode topologique de l'examen du phénomène asymptotique relativement aux équations différentielles ordinaires, Rend. Accad. Nazionale dei Lincei, Cl. Sci. fisiche, mat. e naturali (1947).
- C. Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Math (1978).
- J. Robbin and D. Salamon, Dynamical systems, shape theory, and the Conley index, Ergodic Theory and Dynamical Systems (1988).
- MM, Leray functor and the cohomological Conley index for discrete time dynamical systems, Trans. Amer. Math. Soc. (1990).
- A. Szymczak, The Conley index for discrete semidynamical systems, Topology and Its Applications (1995).
- J. Franks and D. Richeson, Shift equivalence and the Conley index, Trans. Amer. Math. Soc. (2000).

Outline ${ }_{92}$

- Dynamical systems
- Rigorous numerics of dynamical systems
- Homological invariants of dynamical systems
- Computing homological invariants
- Homology algorithms for subsets of \mathbb{R}^{d}
- Homology algorithms for maps of subsets of \mathbb{R}^{d}
- Applications

Cubical sets ${ }_{93}$

- The set $A \subset \mathbb{R}^{d}$ is cubical if there exists a finite family $\mathcal{A} \subset \mathcal{K}$ such that $A=|\mathcal{A}|$.

Cubical sets ${ }_{93}$

- The set $A \subset \mathbb{R}^{d}$ is cubical if there exists a finite family $\mathcal{A} \subset \mathcal{K}$ such that $A=|\mathcal{A}|$.
- The family \mathcal{A} is referred to as the representation of A.

Cubical sets ${ }_{93}$

- The set $A \subset \mathbb{R}^{d}$ is cubical if there exists a finite family $\mathcal{A} \subset \mathcal{K}$ such that $A=|\mathcal{A}|$.
- The family \mathcal{A} is referred to as the representation of A.
- The unique minimal representation, the minimal representation of A, is denoted by $\mathcal{K}_{\text {min }}(A)$.

Cubical sets ${ }_{93}$

- The set $A \subset \mathbb{R}^{d}$ is cubical if there exists a finite family $\mathcal{A} \subset \mathcal{K}$ such that $A=|\mathcal{A}|$.
- The family \mathcal{A} is referred to as the representation of A.
- The unique minimal representation, the minimal representation of A, is denoted by $\mathcal{K}_{\text {min }}(A)$.
- A cubical set is a full cubical set if its minimal representation consists only of full elementary cubes.

Cubical sets ${ }_{93}$

- The set $A \subset \mathbb{R}^{d}$ is cubical if there exists a finite family $\mathcal{A} \subset \mathcal{K}$ such that $A=|\mathcal{A}|$.
- The family \mathcal{A} is referred to as the representation of A.
- The unique minimal representation, the minimal representation of A, is denoted by $\mathcal{K}_{\text {min }}(A)$.
- A cubical set is a full cubical set if its minimal representation consists only of full elementary cubes.

Theorem. (Blass, Holsztyński, 1972) Every polyhedron is homeomorphic to a cubical set.

A cubical set in $\mathbb{R}^{2}{ }_{94}$

A full cubical set in $\mathbb{R}^{3}{ }_{95}$

Combinatorial boundary and interior ${ }_{96}$

- For $A \subset \mathbb{R}^{d}$ define

$$
o_{d}(A):=\left\{Q \in \mathcal{K}_{d} \mid Q \cap A \neq \emptyset\right\},
$$

Combinatorial boundary and interior 96

- For $A \subset \mathbb{R}^{d}$ define

$$
o_{d}(A):=\left\{Q \in \mathcal{K}_{d} \mid Q \cap A \neq \emptyset\right\},
$$

- For $\mathcal{N} \subset \mathcal{K}_{d}$ define

$$
\begin{aligned}
\operatorname{int} \mathcal{N} & :=\left\{Q \in \mathcal{N} \mid o_{d}(Q) \subset \mathcal{N}\right\} \\
& \operatorname{bd} \mathcal{N}:=\mathcal{N} \backslash \operatorname{int}(\mathcal{N}) .
\end{aligned}
$$

Combinatorial boundary and interior ${ }_{97}$

Combinatorial boundary and interior ${ }_{98}$

Combinatorial boundary and interior ${ }_{99}$

Multivalued combinatorial maps 100

- $\mathcal{X} \subset \mathcal{K}^{d}$ - a finite subfamily
- $\mathcal{F}: \mathcal{X} \rightrightarrows \mathcal{X}$ - a multivalued combinatorial map

Multivalued combinatorial maps 100

- $\mathcal{X} \subset \mathcal{K}^{d}$ - a finite subfamily
- $\mathcal{F}: \mathcal{X} \rightrightarrows \mathcal{X}$ - a multivalued combinatorial map
- The associated digraph has \mathcal{X} as the set of vertices and an edge from P to Q iff $Q \in \mathcal{F}(P)$.

Combinatorial boundary and interior 101

Combinatorial enclosures 102

- A combinatorial multivalued map $\mathcal{F}: \mathcal{X} \rightrightarrows \mathcal{X}$ is a combinatorial enclosure of $f: X \rightarrow X$ if for every $Q \in \mathcal{X}$

$$
o_{d}(f(Q)) \subset \mathcal{F}(Q)
$$

Combinatorial enclosures 102

- A combinatorial multivalued map $\mathcal{F}: \mathcal{X} \rightrightarrows \mathcal{X}$ is a combinatorial enclosure of $f: X \rightarrow X$ if for every $Q \in \mathcal{X}$

$$
o_{d}(f(Q)) \subset \mathcal{F}(Q) .
$$

- In this case we say that f is a selector of \mathcal{F}.

Combinatorial enclosures 102

- A combinatorial multivalued map $\mathcal{F}: \mathcal{X} \rightrightarrows \mathcal{X}$ is a combinatorial enclosure of $f: X \rightarrow X$ if for every $Q \in \mathcal{X}$

$$
o_{d}(f(Q)) \subset \mathcal{F}(Q) .
$$

- In this case we say that f is a selector of \mathcal{F}.
- If $\mathcal{F}: \mathcal{X} \rightarrow \mathcal{X}$ is a combinatorial enclosure of $f: X \rightarrow X$, then for every $Q \in \mathcal{X}$

$$
f(Q) \subset \operatorname{int}|\mathcal{F}(Q)| .
$$

Combinatorial enclosures ${ }_{103}$

Combinatorial enclosures ${ }_{104}$

Combinatorial enclosures ${ }_{105}$

Combinatorial enclosures 106

Graph of a continuous map f 107

Estimates of values on the grid of cubes ${ }_{108}$

Multivalued representation \mathcal{F}_{109}

Combinatorial solutions ${ }_{110}$

- Let I be an interval in \mathbb{Z} containing 0 .
- A solution through $Q \in \mathcal{K}$ under \mathcal{F} is a function $\Gamma: I \rightarrow \mathcal{K}$ satisfying the following two properties:
(1) $\Gamma(0)=Q$,
(2) $\Gamma(n+1) \in \mathcal{F}(\Gamma(n))$ for all n such that $n, n+1 \in I$.

Combinatorial solutions 110

- Let I be an interval in \mathbb{Z} containing 0 .
- A solution through $Q \in \mathcal{K}$ under \mathcal{F} is a function $\Gamma: I \rightarrow \mathcal{K}$ satisfying the following two properties:
(1) $\Gamma(0)=Q$,
(2) $\Gamma(n+1) \in \mathcal{F}(\Gamma(n))$ for all n such that $n, n+1 \in I$.
- In the language of the associated digraph a solution is just a path in the digraph

Combinatorial invariant parts ${ }_{111}$

Assume $\mathcal{N} \subset \mathcal{K}$ is finite. The invariant part of \mathcal{N} under \mathcal{F} is $\operatorname{Inv}(\mathcal{N}, \mathcal{F}):=\{Q \in \mathcal{N} \mid$ there exists a full solution $\Gamma: \mathbb{Z} \rightarrow \mathcal{N}\}$.

Combinatorial invariant parts ${ }_{111}$

Assume $\mathcal{N} \subset \mathcal{K}$ is finite. The invariant part of \mathcal{N} under \mathcal{F} is

$$
\operatorname{Inv}(\mathcal{N}, \mathcal{F}):=\{Q \in \mathcal{N} \mid \text { there exists a full solution } \Gamma: \mathbb{Z} \rightarrow \mathcal{N}\}
$$

The positively invariant part and the negatively invariant part of \mathcal{N} under \mathcal{F} are defined respectively by

$$
\begin{aligned}
& \operatorname{Inv}^{+}(\mathcal{N}, \mathcal{F}):=\left\{Q \in \mathcal{N} \mid \text { there exists a solution } \Gamma: \mathbb{Z}^{+} \rightarrow \mathcal{N}\right\} \\
& \operatorname{Inv}^{-}(\mathcal{N}, \mathcal{F}):=\left\{Q \in \mathcal{N} \mid \text { there exists a solution } \Gamma: \mathbb{Z}^{-} \rightarrow \mathcal{N}\right\}
\end{aligned}
$$

Combinatorial invariant parts ${ }_{111}$

Assume $\mathcal{N} \subset \mathcal{K}$ is finite. The invariant part of \mathcal{N} under \mathcal{F} is

$$
\operatorname{Inv}(\mathcal{N}, \mathcal{F}):=\{Q \in \mathcal{N} \mid \text { there exists a full solution } \Gamma: \mathbb{Z} \rightarrow \mathcal{N}\}
$$

The positively invariant part and the negatively invariant part of \mathcal{N} under \mathcal{F} are defined respectively by

$$
\begin{aligned}
& \operatorname{Inv}^{+}(\mathcal{N}, \mathcal{F}):=\left\{Q \in \mathcal{N} \mid \text { there exists a solution } \Gamma: \mathbb{Z}^{+} \rightarrow \mathcal{N}\right\} \\
& \operatorname{Inv}^{-}(\mathcal{N}, \mathcal{F}):=\left\{Q \in \mathcal{N} \mid \text { there exists a solution } \Gamma: \mathbb{Z}^{-} \rightarrow \mathcal{N}\right\}
\end{aligned}
$$

We have the following obvious formula

$$
\operatorname{Inv}(\mathcal{N}, \mathcal{F})=\operatorname{Inv}^{-}(\mathcal{N}, \mathcal{F}) \cap \operatorname{Inv}^{+}(\mathcal{N}, \mathcal{F})
$$

Algorithmizable formulae for invariant parts 112

Let $\mathcal{F}_{\mathcal{N}}: \mathcal{N} \rightrightarrows \mathcal{N}$ denote the map given by

$$
\mathcal{F}_{\mathcal{N}}(Q):=\mathcal{F}(Q) \cap \mathcal{N} .
$$

Algorithmizable formulae for invariant parts 112

Let $\mathcal{F}_{\mathcal{N}}: \mathcal{N} \rightrightarrows \mathcal{N}$ denote the map given by

$$
\mathcal{F}_{\mathcal{N}}(Q):=\mathcal{F}(Q) \cap \mathcal{N} .
$$

There exists an integer n such that

$$
\begin{aligned}
& \operatorname{Inv}^{+}(\mathcal{N}, \mathcal{F})=\bigcap_{i=0}^{n} \mathcal{F}_{\mathcal{N}}^{i}(\mathcal{N}) \\
& \operatorname{Inv}^{-}(\mathcal{N}, \mathcal{F})=\bigcap_{i=0}^{n} \mathcal{F}_{\mathcal{N}}^{-i}(\mathcal{N})
\end{aligned}
$$

Combinatorial Index Pairs. 113

A finite subset \mathcal{N} of \mathcal{K}_{d} is an isolating neighborhood for \mathcal{F} if $\operatorname{Inv}(\mathcal{N}, \mathcal{F}) \subset \operatorname{int} \mathcal{N}$.

Combinatorial Index Pairs. 113

A finite subset \mathcal{N} of \mathcal{K}_{d} is an isolating neighborhood for \mathcal{F} if

$$
\operatorname{Inv}(\mathcal{N}, \mathcal{F}) \subset \operatorname{int} \mathcal{N}
$$

We say that $\left(\mathcal{P}_{1}, \mathcal{P}_{2}\right)$ is a combinatorial index pair for \mathcal{F} in \mathcal{N} if $\mathcal{P}_{2} \subset \mathcal{P}_{1} \subset$ \mathcal{N} and the following three conditions are satisfied.

Combinatorial Index Pairs. ${ }^{113}$

A finite subset \mathcal{N} of \mathcal{K}_{d} is an isolating neighborhood for \mathcal{F} if

$$
\operatorname{Inv}(\mathcal{N}, \mathcal{F}) \subset \operatorname{int} \mathcal{N}
$$

We say that $\left(\mathcal{P}_{1}, \mathcal{P}_{2}\right)$ is a combinatorial index pair for \mathcal{F} in \mathcal{N} if $\mathcal{P}_{2} \subset \mathcal{P}_{1} \subset$ \mathcal{N} and the following three conditions are satisfied.

- (positive relative invariance)

$$
\mathcal{F}\left(\mathcal{P}_{i}\right) \cap \mathcal{N} \subset \mathcal{P}_{i}
$$

Combinatorial Index Pairs. ${ }^{113}$

A finite subset \mathcal{N} of \mathcal{K}_{d} is an isolating neighborhood for \mathcal{F} if

$$
\operatorname{Inv}(\mathcal{N}, \mathcal{F}) \subset \operatorname{int} \mathcal{N}
$$

We say that $\left(\mathcal{P}_{1}, \mathcal{P}_{2}\right)$ is a combinatorial index pair for \mathcal{F} in \mathcal{N} if $\mathcal{P}_{2} \subset \mathcal{P}_{1} \subset$ \mathcal{N} and the following three conditions are satisfied.

- (positive relative invariance)

$$
\mathcal{F}\left(\mathcal{P}_{i}\right) \cap \mathcal{N} \subset \mathcal{P}_{i}
$$

- (exit set)

$$
\mathcal{F}\left(\mathcal{P}_{1}\right) \cap \operatorname{bd} \mathcal{N} \subset \mathcal{P}_{2}
$$

Combinatorial Index Pairs. ${ }^{113}$

A finite subset \mathcal{N} of \mathcal{K}_{d} is an isolating neighborhood for \mathcal{F} if

$$
\operatorname{Inv}(\mathcal{N}, \mathcal{F}) \subset \operatorname{int} \mathcal{N}
$$

We say that $\left(\mathcal{P}_{1}, \mathcal{P}_{2}\right)$ is a combinatorial index pair for \mathcal{F} in \mathcal{N} if $\mathcal{P}_{2} \subset \mathcal{P}_{1} \subset$ \mathcal{N} and the following three conditions are satisfied.

- (positive relative invariance)

$$
\mathcal{F}\left(\mathcal{P}_{i}\right) \cap \mathcal{N} \subset \mathcal{P}_{i}
$$

- (exit set)

$$
\mathcal{F}\left(\mathcal{P}_{1}\right) \cap b d \mathcal{N} \subset \mathcal{P}_{2}
$$

- (isolation)

$$
\operatorname{Inv}(\mathcal{N}, \mathcal{F}) \subset \mathcal{P}_{1} \backslash \mathcal{P}_{2}
$$

Index Pairs from Combinatorial Index Pairs. 114

Theorem. (A. Szymczak 1997, MM 1996,2006)
Assume \mathcal{N} is an isolating neighborhood for \mathcal{F} and $\left(\mathcal{P}_{1}, \mathcal{P}_{2}\right)$ is a combinatorial index pair for \mathcal{F} in \mathcal{N}. Then for any selector f of \mathcal{F} the set $|\mathcal{N}|$ is an isolating neighborhood for f and $\left(\left|\mathcal{P}_{1}\right|,\left|\mathcal{P}_{2}\right|\right)$ is a index pair for f.

Construction of index quadruples ${ }_{115}$

Theorem. (MM,2005)
Assume \mathcal{N} is an isolating neighborhood for \mathcal{F}. Let

$$
\begin{aligned}
& \mathcal{P}_{1}:=\operatorname{Inv}^{-}(\mathcal{N}, \mathcal{F}), \\
& \mathcal{P}_{2}:=\operatorname{Inv}^{-}(\mathcal{N}, \mathcal{F}) \backslash \operatorname{Inv}^{+}(\mathcal{N}, \mathcal{F}) .
\end{aligned}
$$

Then $\left(\mathcal{P}_{1}, \mathcal{P}_{2}\right)$ is a combinatorial index pair for \mathcal{F} in \mathcal{N} and

$$
\left|\mathcal{P}_{1}\right| \backslash\left|\mathcal{P}_{2}\right| \subset \operatorname{int}|\mathcal{N}| .
$$

Moreover, if

$$
\begin{aligned}
& \overline{\mathcal{P}_{1}}:=\mathcal{P}_{1} \cup \mathcal{F}\left(\mathcal{P}_{1}\right), \\
& \overline{\mathcal{P}}_{2}:=\mathcal{P}_{2} \cup\left(\mathcal{F}\left(\mathcal{P}_{1}\right) \backslash \mathcal{P}_{1}\right),
\end{aligned}
$$

then for any selector f of \mathcal{F} the quadruple $\left(\left|\mathcal{P}_{1}\right|,\left|\mathcal{P}_{1}\right|,\left|\overline{\mathcal{P}}_{1}\right|,\left|\overline{\mathcal{P}}_{2}\right|\right)$ is an index quadruple.

Positive invariant part algorithm 116

function positiveInvariantPart(set N, combinatorialMap F)
$\mathrm{F}:=$ restrictedMap(F, N);
$\mathrm{S}:=\mathrm{C}:=\mathrm{N}$;
repeat
$S^{\prime}=S ;$
C := evaluate(F, C);
$\mathrm{S}:=\mathrm{S} \cap \mathrm{C}$;
until $\left(S=S^{\prime}\right)$;
return S ;

Positive invariant part algorithm 116

function positiveInvariantPart(set N, combinatorialMap F)
$\mathrm{F}:=$ restrictedMap(F, N);
$\mathrm{S}:=\mathrm{C}:=\mathrm{N}$;
repeat
$S^{\prime}=S ;$
$C:=$ evaluate(F, C);
$\mathrm{S}:=\mathrm{S} \cap \mathrm{C}$;
until ($\mathrm{S}=\mathrm{S}^{\prime}$);
return S ;

> Proposition. Assume the algorithm is called with a collection of cubes \mathcal{N} and a combinatorial multivalued map \mathcal{F} on input. Then it always stops and returns the positive invariant part of \mathcal{F} in \mathcal{N}.

Combinatorial Index Pair Algorithm 117

function combinatorialIndexPair(set N, combinatorialMap F)
$\mathrm{S}^{+}:=$positiveInvariantPart(N, F);
Finv := evaluateInverse(F);
$\mathrm{S}^{-}:=$positiveInvariantPart(N, Finv);
if $S^{-} \cap S^{+} \subset \operatorname{int}(N)$ then
$\mathrm{P}_{1}:=\mathrm{S}^{-} ;$
$\mathrm{P}_{2}:=\mathrm{S}^{-} \backslash \mathrm{S}^{+}$;
$\overline{\mathrm{P}}_{1}:=\mathrm{P}_{1} \cup \mathrm{~F}\left(\mathrm{P}_{1}\right) ;$
$\bar{P}_{2}:=P_{2} \cup F\left(P_{1}\right) \backslash P_{1} ;$
return ($\mathrm{P}_{1}, \mathrm{P}_{2}, \overline{\mathrm{P}}_{1}, \overline{\mathrm{P}}_{2}$);
else
return "Failure";
endif;

Combinatorial Index Pair Algorithm 117

function combinatorialIndexPair(set N, combinatorialMap F)
$\mathrm{S}^{+}:=$positiveInvariantPart(N, F);
Finv:= evaluateInverse(F);
$\mathrm{S}^{-}:=$positiveInvariantPart(N, Finv);
if $S^{-} \cap S^{+} \subset \operatorname{int}(N)$ then
$\mathrm{P}_{1}:=\mathrm{S}^{-}$;
$\mathrm{P}_{2}:=\mathrm{S}^{-} \backslash \mathrm{S}^{+} ;$
$\overline{\mathrm{P}}_{1}:=\mathrm{P}_{1} \cup \mathrm{~F}\left(\mathrm{P}_{1}\right) ;$
$\overline{\mathrm{P}}_{2}:=\mathrm{P}_{2} \cup \mathrm{~F}\left(\mathrm{P}_{1}\right) \backslash \mathrm{P}_{1} ;$
return ($\mathrm{P}_{1}, \mathrm{P}_{2}, \overline{\mathrm{P}}_{1}, \overline{\mathrm{P}}_{2}$);
else
return "Failure";
endif;

Theorem. Assume the algorithm is called with a collection of cubes \mathcal{N} and a combinatorial enclosure of f on input. If it does not fail, then it returns representations of an index quadruple of f.

References ${ }_{118}$

- MM, Topological invariants, multivalued maps and computer assisted proofs in Dynamics, Computers Math. Applic. (1996).
- A. Szymczak, A combinatorial procedure for finding isolating neighborhoods and index pairs, Proc. Royal Soc. Edinburgh, Ser. A (1997).
- MM, Index Pairs Algorithms, Foundations of Computational Mathematics (2006).

