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What is discrete Morse theory?

A combinatorial construction on simplicial complexes (or more
generally regular cell complexes) which

I is a convenient tool for analyzing the topology of the complex

I mimicks smooth Morse theory,

I extends it to general complexes (not necessarily triangulated
manifolds),

I can be easily implemented in the form of algorithms.
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A smooth Morse function

Marston Morse, 1920’s, reference: Milnor, Morse theory

M a smooth manifold (without boundary), f : M → R smooth

A point a ∈ M is a critical point of f if Df (a) = 0, that is, in a
local coordinate system, all partial derivatives vanish at a.

A critical point is nondegenerate, if the matrix of second order
derivatives H(a) has maximal rank. The index of a critical point a
is the number of negative eigenvalues of H(a), i.e. the number of
independent directions in which the function values decrease.

f is a Morse function if it has only nondegenerate critical points.

Morse functions are generic.
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Digression: CW complexes

A d-cell σ is a topological space homeomorphic to the closed unit
ball Bd ⊂ Rd . Its boundary ∂σ is the part corresponding to
Sd−1 ⊂ Bd .

Attaching a cell σ to a topological space X along an attaching
map f : ∂σ → X produces the space

X ∪f σ = X q σ/s∼f (s),s∈∂σ

Attaching cells along homotopic attaching maps produces
homotopy equivalent spaces.
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CW complexes

A CW complex is a finite nested sequence

∅ ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xn = X ,

where Xi is obtained by attaching a cell to Xi−1.

The order of attaching can be rearranged so that the dimension of
the cells increases.

The m-skeleton X (m) is the union of all cells of dimension d ≤ m.

The cellular homology of a CW complex is computed from a chain
complex generated by the cells.
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Sublevel sets

The set Ma = {x ∈ M | f (x) ≤ a} is the sublevel set of f at a ∈ R.

Assume that a < b and f −1([a, b]) is compact.

I If f −1([a, b]) contains no critical points, then Ma is a
deformation retract of Mb.

I If f −1([a, b]) contains only one critical point p of index i ,
a < f (p) < b, then Mb has the homotopy type of Ma with
one cell of dimension i attached.

The critical points of a smooth Morse function on M determine
the homotopy type of M:
M has the homotopy type of a CW complex with one cell of
dimension m for each critical point of index m.
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The usual example

M upright torus, f : M → R height function:

from http://en.wikipedia.org/wiki/Morse theory
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Morse homology

Morse complex

C = · · · → Ci → Ci−1 → · · · · · · → C1 → C0 → 0,

Ci free group generated by the critical points of f of index i ,
boundary maps ∂i : Ci → Ci−1 a bit complicated . . .

Morse homology is isomorphic to the singular homology:
H∗(C ) ∼= H∗(M,Z).

Morse inequalities: if cd is the number of critical points of index d
and bd is the d-th Betti number, then for all d

cd ≥ bd , χ(M) = c0 − c1 + c2 − . . . ,

cd − cd−1 + · · ·+ (−1)dc0 ≥ bd − bd−1 + · · ·+ (−1)db0.
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Applications

. . . impressive, here are just a few, topologically oriented

I Geodesics on Riemannian manifolds

I Bott periodicity theorem: homotopy groups of classical Lie
groups are periodic, as a consequence K -theory is periodic

I Smale’s h-cobordism theorem leading to a proof of the
Poincaré conjecture in dimension n ≥ 5

I many generalizations leading to further impressive results. . .
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Extensions to the PL and discrete settings

(The list is definitely incomplete . . . )

I Banchoff, Morse theory of PL functions on polyhedral
manifolds 1967

I Goresky and MacPherson, Stratified Morse theory, 1988

I Karron and Cox, Digital Morse theory, 1994, applications to
isosurface reconstruction

I Edelsbrunner, Harer, Zomorodian: a classification of PL
critical points leading to PL Morse-Smale complexes for
2-manifolds, 2006

I Bestwina, PL Morse theory, 2008

I . . .
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Discrete Morse functions

M a regular CW complex (for example, a simplicial or cubical
complex)

A discrete Morse function F on M is a labelling of the cells of M
which associates a value F (σ) to each cell σ ∈ M such that

I F increases with dimension, excepts possibly in one direction,
I that is, for every σk ∈ M

I F (τ k−1) ≥ F (σk) for at most one face τ < σ,
I F (τ k+1) ≤ F (σk) for at most one coface τ > σ,
I at most one of these two possibilities can happen.
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Discrete vector field of F

A discrete Morse function F on a cell complex M defines a partial
pairing on the set of cells which we call the discrete vector field of
F .

V = {(τ, σ), τ < σ,F (τ) ≥ F (σ)}.

V contains all regular cells.

All cells not in V are critical.

V is conveniently denoted by arrows pointing in the direction of
function decent from lower to higher dimensional cells.
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Example: Discrete Morse function on the torus
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Digression: elementary collapses

Let τ < σ, and assume that τ is not the face of any other cell.

An elementary collaps is obtained by pushing the free face τ of σ
together with the whole cell onto the remaining faces.

The resulting space has the same homotopy type.

A pair of regular cells (τ, σ) with τ a free face corresponds to an
elementary collaps.

Neža Mramor Discrete Morse Theory



Smooth Morse functions
Discrete Morse functions

Applications

Sublevel complexes

The sublevel complex at the value c consists of all cells with value
less than c together with their faces:

Mc =
⋃

F (α)≤c

⋃
β≤α

β

If F−1((a, b]) contains no critical cells, Mb collapses to Ma.

Proof: Mb is obtained by adding a cell σ and its pair τ < σ in V
which must be a free face.
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If α is the unique critical cell with F (α) ∈ (a, b] then Mb is
homotopy equivalent to Ma with a cell of dimension dimα
attached.

Proof: a critical cell has its boundary in a previous sublevel
complex, adding the critical cell corresponds to gluing the cell onto
this subcomplex along the boundary.

M has the homotopy type of a CW complex with one cell of
dimension m for each critical cell of dimension m.
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V -paths

A V -path is a sequence (τ1, σ1), (τ2, σ2), . . . , (τn, σm), where
(τi , σi ) ∈ V and τi+1 < σi and σi 6= σj for all i 6= j .

Along a V -path function values descend. Clearly, a V -path can not
form cycles.
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A combinatorial approach

A discrete gradient vector field can be represented as a partial
matching in the Hasse diagram of the face poset of M.

Originally arrows in the Hasse diagram point from cells to their
faces, reverse all arrows belonging to the partial matching.

A discrete gradient vector field is an acyclic partial matching, that
is, after reversing the arrows there are no directed cycles.

A V -path corresponds to a directed path in the modified Hasse
diagram which alternates between two levels: one segment belongs
to the face poset and one to the matching.
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Characterization of discrete gradient vector fields

A discrete vector field V is the gradient field of a discrete Morse
function if and only if the corresponding partial matching is
acyclic, that is, no V -path forms a cycle.

The proof amounts to assigning values along V -paths: we start by
assigning the value d to every critical cell of dimension d , and
continue assigning decreasing values along V -paths, alternating
between the levels d − 1 and d , from the interval (d − 1, d) and
where two V -paths meet (causing a conflict), the lower value wins.
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Internal collapses

A matching with a single pair (τ, σ) is acyclic, such a pair can be
removed in a suitable way without affecting the homotopy type of
the complex.

How do we formalize this?
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A poset map with small fibers between posets P and Q is a map
ϕ : P → Q such that each fiber ϕ−1(q) is either empty or consists
of one element or of two comparable elements.

A poset map with small fibers induces an acyclic partial matching
and conversely, every acyclic matching induces a poset map with
small fibers.

A poset map with small fibers ϕ : P → Q where Q is a chain
determines an order of allowed internal collapses.
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Discrete Morse homology

The discrete Morse complex arising from a discrete Morse function
on the cell complex M

→ · · ·Ci → Ci−1 → · · · → C1 → C0 → 0,

where Ci is now generated by critical cells of dimension i ,

∂i : Ci → Ci−1

is computed from the V -paths starting in the boundary of a cell σi

and ending in critical cells of dimension i − 1.

Morse inequalities: if cd is the number of critical d-cells and bd is
the d-th Betti number, then for all d

cd ≥ bd , χ(X ) = c0 − c1 + c2 − . . . ,

cd − cd−1 + · · ·+ (−1)dc0 ≥ bd − bd−1 + · · ·+ (−1)db0.
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Canceling critical cells

A simple way of reducing the complexity:

Cancel two critical cells which are connected by only one V -path
by reversing the arrows along this single path, or, equivalently, by
reversing the arrows in the corresponding partial matching on the
Hasse diagram.

This introduces no cycles, so the resulting discrete vector field in
also arises from a discrete Morse function.

This reduces the complexity of the discrete Morse complex and
thus the computation of the homology groups.

Cancelling critical points mimics the process of cancelling handles
in smooth Morse theory . . .
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Some obvious conclusions

I If there exists a complete acyclic matching on the Hasse
diagram (with the empty set added as a cell of dimension −1)
of M, then M collapses to a point, in particular, it is
contractible.
A V -path starting in a free face goves an order of collapses.

I If M has only two critical cells, one in dimension 0 and one in
dimension d , it is homotopy equivalent to a d-sphere. If it has
one critical cell of dimension 0 and n critical cells of dimension
d , it is homotopy equivalent to e wedge of d-spheres.

I Less obvious: if M is a triangulated d-manifold with a discrete
Morse function with exactly two critical simplices. Then it is a
triangulated d-sphere.
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Perfect discrete Morse functions

A discrete Morse function with the number cd of critical cells of
dimension d equal to the Betti number bd for all d is perfect.

There exist regular cell complexes of dimension 2 that do not have
a perfect discrete Morse function, noncollapsible contractible
complexes (a famous example is Bing’s house with two rooms).

On 2-dimensional complexes, starting with any discrete Morse
function, an optimal (the best possible) discrete Morse function
can be obtained by canceling critical cells.

In dimension 3 or more this is not true any more, there exist
complexes (even triangulated manifolds) with no perfect discrete
Morse function.

Benedetti, Adiprasito: all tight complexes (generalization of convex
cells) in Rn admit a perfect discrete Morse function . . .
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Digression to smooth theory: The Morse-Smale complex

Thom(1940), Smale(1960’s)

M a Riemannian manifold, f : M → R a smooth Morse function.

I The descending disk Ap of a critical point p is the union of all
flow lines of the gradient flow which begin in p, and the
ascending disk Dp is the union of all flow lines which end in p

I If all ascending and descending disks intersect transversely,
their intersections form a CW-complex, the Morse-Smale
complex of f on M.

I The function is a Morse-Smale function, these are generic
among Morse functions.

I The height function of the upright torus is not
Morse-Smale. . .
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Extensions to infinite complexes

Morse theory works for proper functions.

A discrete Morse function F is proper in F−1([a, b]) consists of a
finite number of cells.

So, when is a discrete vector filed the gradient field of a proper
function?

Ayala, Vilches, Jeřse, M: Let V be a discrete vector field on a
locally finite infinite simplicial complex M with finitely many
critical elements which contains no nontrivial closed V -paths and
no forbidden configurations. Then V admits a proper integral.
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Discrete versus smooth Morse theory

Gallais: a smooth Morse function f on a closed Riemannian
manifold M can be approximated by a discrete Morse function F
on a triangulation of M so that critical points of f correspond to
critical cells of F of dimension d .

If, in addition, the function f is Morse-Smale, the V -paths
connecting any pair of critical cells σ and τ of consecutive
dimensions are in bijection with integral curves of the gradient
vector field of f between the corresponding critical points.

The Morse complexes are thus equivalent.

Opposite direction: if M is a smooth manifold, and a discrete
Morse function on a triangulation of M is given, is it the discrete
approximation of a smooth Morse function f on M?
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An example from graphs

Let K be a given subcomplex of the n-dimensional simplex S with
vertices v1, . . . , vn.

For an unknown simpex σ ∈ S the point is to determine whether σ
belongs to K by testing which vertices of S belong to σ. The
complex K is nonevasive if it suffices to test less that all the n + 1
vertices.

An algorithm for choosing vertices corresponds to a gradient vector
filed in the complex K .

It can be shown that if K is nonevasive, it collapses to a point.
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Applications to topological data analysis

Given function values fi at points xi we would like to determine
properties of the function f .

I A cell decomposition of the domain:
I in some domains (for example images and image sequences)

the decomposition is given
I a number of algorithms exists

I Extending the given function values on the vertices to a
discrete Morse function:

I it suffices to define a discrete gradient vector field which
respects the given function values

I King, Knudsen, M. a recursive algorithm which, for every
vertex, extends the discrete gradient field defined on the lower
link to the lower star, and optimizes by canceling at each step,
optimal in dimension 2,

I the global min is correct, the global max is a cell with the
maximal value in its boundary.
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Cancelling

Cancelling enables noise reduction:

I Cancel along V -paths with values in initial and final point
differing by less than some threshold.

I Use background data!

I Problem: how to control the canceling, which are the critical
cells which survive?
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Discrete ascending and descending regions

Jeřse, M: an algorithm for construction:

I the descending region of a given given critical cell σ of some
discrete Morse function F (or rather its discrete gradient
vector field) is obtained, with some corrections, as the union
of V -paths starting in σ,

I the ascending regions are the descending regions of −f ,

I after subdivision, the descending regions are discs,

I works in any dimension, practically tested on dimensions up to
4
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Example
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Tracing features

Fti a finite family of discrete Morse fuctions on a regular cell
complex M

I Birth-death algorithm (King, Knudson, M.):

I for each i the strip M × [ti−1, ti ] is decomposed into cells
σ × [ti−1, ti ],

I the given discrete vector field is extended from Fti on the slice
M × {ti} to the strip mimicking a time decreasing function,

I critical cells σ in the slice are paired with σ × [ti−1, ti ],

I this produces a V -path connecting a critical cell in M × {ti}
with a critical cell in the previous slice,

I the result is a bifurtacation diagram connecting the critical
points.

I Problem: the choice is not natural, background information
should be included,
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